Inverse spectral problems for difference operators with rational scattering matrix function

In this paper we obtain explicit formulas for the coefficients of a second order difference block operator if its spectral or its scattering functions are rational matrix functions analytic and invertible on the unit circle. The solutions are given in terms of realizations of the spectral or scattering function.

[1]  H. Dym On Hermitian block Hankel matrices, matrix polynomials, the Hamburger moment problem, interpolation and maximum entropy , 1989 .

[2]  D. Alpay,et al.  Inverse Spectral Problem for Differential Operators with Rational Scattering Matrix Functions , 1995 .

[3]  Jeffrey S. Geronimo,et al.  Scattering theory and matrix orthogonal polynomials on the real line , 1982 .

[4]  Y. Kamp,et al.  Orthogonal polynomial matrices on the unit circle , 1978 .

[5]  Y. Kamp,et al.  Schur Parametrization of Positive Definite Block-Toeplitz Systems , 1979 .

[6]  J-unitary preserving automorphisms of rational matrix functions: state space theory, interpolation, and factorization , 1994 .

[7]  Philippe Delsarte,et al.  On a generalization of the Szegö-Levinson recurrence and its application in lossless inverse scattering , 1992, IEEE Trans. Inf. Theory.

[8]  D. Alpay,et al.  State space theory of automorphisms of rational matrix functions , 1992 .

[9]  L. Rodman,et al.  Interpolation of Rational Matrix Functions , 1990 .

[10]  H. Dym,et al.  Applications of Factorization and Toeplitz Operators to Inverse Problems , 1982 .

[11]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[12]  M. A. Kaashoek,et al.  Szegö-Kac-Achiezer formulas in terms of realizations of the symbol , 1987 .

[13]  R. Bolstein,et al.  Expansions in eigenfunctions of selfadjoint operators , 1968 .

[14]  Israel Gohberg,et al.  Unitary Rational Matrix Functions , 1988 .

[15]  D. Alpay,et al.  On Applications of Reproducing Kernel Spaces to the Schur Algorithm and Rational J Unitary Factorization , 1986 .