Cryptomelane-type MnO2/carbon nanotube hybrids as bifunctional electrode material for high capacity potassium-ion full batteries

[1]  Zaiping Guo,et al.  Understanding High-Energy-Density Sn4P3 Anodes for Potassium-Ion Batteries , 2018, Joule.

[2]  Tao Gao,et al.  Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries , 2018 .

[3]  Tian Zheng,et al.  Boosting the Potassium Storage Performance of Alloy‐Based Anode Materials via Electrolyte Salt Chemistry , 2018 .

[4]  Yong Lei,et al.  Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries , 2018, Nature Communications.

[5]  A. Glushenkov,et al.  High capacity potassium-ion battery anodes based on black phosphorus , 2017 .

[6]  Terence B. Hook,et al.  Power and Technology Scaling into the 5 nm Node with Stacked Nanosheets , 2017 .

[7]  Zaiping Guo,et al.  Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries , 2017 .

[8]  L. Mai,et al.  Self-adaptive mesoporous CoS@alveolus-like carbon yolk-shell microsphere for alkali cations storage , 2017 .

[9]  Yang Zheng,et al.  CoS Quantum Dot Nanoclusters for High‐Energy Potassium‐Ion Batteries , 2017 .

[10]  X. Bao,et al.  Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries , 2017 .

[11]  Qiao Hu,et al.  A potassium-rich iron hexacyanoferrate/dipotassium terephthalate@carbon nanotube composite used for K-ion full-cells with an optimized electrolyte , 2017 .

[12]  G. Ceder,et al.  K‐Ion Batteries Based on a P2‐Type K0.6CoO2 Cathode , 2017 .

[13]  G. Ceder,et al.  Investigation of Potassium Storage in Layered P3‐Type K0.5MnO2 Cathode , 2017, Advanced materials.

[14]  P. Barpanda,et al.  Electrochemical potassium-ion intercalation in NaxCoO2: a novel cathode material for potassium-ion batteries. , 2017, Chemical communications.

[15]  Yifang Wu,et al.  A strategy of constructing spherical core-shell structure of Li 1.2 Ni 0.2 Mn 0.6 O 2 @Li 1.2 Ni 0.4 Mn 0.4 O 2 cathode material for high-performance lithium-ion batteries , 2017 .

[16]  Yutao Li,et al.  Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)‐Ion Batteries , 2017, Advanced science.

[17]  Bingan Lu,et al.  An Organic Cathode for Potassium Dual-Ion Full Battery , 2017 .

[18]  Xiulei Ji,et al.  Emerging Non-Aqueous Potassium-Ion Batteries: Challenges and Opportunities , 2017 .

[19]  Linda F. Nazar,et al.  Crystallite Size Control of Prussian White Analogues for Nonaqueous Potassium-Ion Batteries , 2017 .

[20]  K. Kubota,et al.  P2- and P3-KxCoO2 as an electrochemical potassium intercalation host. , 2017, Chemical communications.

[21]  C. Li,et al.  Potassium salts of para-aromatic dicarboxylates as the highly efficient organic anodes for low-cost K-ion batteries , 2017 .

[22]  K. Kubota,et al.  A novel K-ion battery: hexacyanoferrate(II)/graphite cell , 2017 .

[23]  Zhixin Chen,et al.  Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode. , 2017, Journal of the American Chemical Society.

[24]  Xiulei Ji,et al.  Potassium Secondary Batteries. , 2017, ACS applied materials & interfaces.

[25]  A. Manthiram,et al.  Low-Cost High-Energy Potassium Cathode. , 2017, Journal of the American Chemical Society.

[26]  Meng Huang,et al.  Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K-Ion Full Batteries. , 2017, Nano letters.

[27]  Yang Xu,et al.  Potassium Prussian Blue Nanoparticles: A Low‐Cost Cathode Material for Potassium‐Ion Batteries , 2017 .

[28]  G. Guo,et al.  Hierarchical Ru-doped sodium vanadium fluorophosphates hollow microspheres as a cathode of enhanced superior rate capability and ultralong stability for sodium-ion batteries , 2017 .

[29]  Andrew McDonagh,et al.  High‐Capacity Aqueous Potassium‐Ion Batteries for Large‐Scale Energy Storage , 2017, Advanced materials.

[30]  Kyusung Park,et al.  Liquid K–Na Alloy Anode Enables Dendrite‐Free Potassium Batteries , 2016, Advanced materials.

[31]  Keith Share,et al.  Role of Nitrogen-Doped Graphene for Improved High-Capacity Potassium Ion Battery Anodes. , 2016, ACS nano.

[32]  A. Glushenkov,et al.  Tin-based composite anodes for potassium-ion batteries. , 2016, Chemical communications.

[33]  Guozhong Cao,et al.  Mesocrystal MnO cubes as anode for Li-ion capacitors , 2016 .

[34]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[35]  Tianxi Liu,et al.  Flexible Electrospun Carbon Nanofiber@NiS Core/Sheath Hybrid Membranes as Binder‐Free Anodes for Highly Reversible Lithium Storage , 2016 .

[36]  S. Passerini,et al.  Non-Aqueous K-Ion Battery Based on Layered K0.3MnO2 and Hard Carbon/Carbon Black , 2016 .

[37]  Liangbing Hu,et al.  A perylene anhydride crystal as a reversible electrode for K-ion batteries , 2016 .

[38]  Xiaodi Ren,et al.  Potassium-Ion Oxygen Battery Based on a High Capacity Antimony Anode. , 2015, ACS applied materials & interfaces.

[39]  Steven D. Lacey,et al.  Organic electrode for non-aqueous potassium-ion batteries , 2015 .

[40]  Roy G. Gordon,et al.  Alkaline quinone flow battery , 2015, Science.

[41]  Xiulei Ji,et al.  Carbon Electrodes for K-Ion Batteries. , 2015, Journal of the American Chemical Society.

[42]  Ji‐Guang Zhang,et al.  Effects of structural defects on the electrochemical activation of Li 2 MnO 3 , 2015 .

[43]  Feihe Huang,et al.  CO₂-Responsive Pillar[5]arene-Based Molecular Recognition in Water: Establishment and Application in Gas-Controlled Self-Assembly and Release. , 2015, Journal of the American Chemical Society.

[44]  Graeme Henkelman,et al.  Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. , 2015, Journal of the American Chemical Society.

[45]  J. Xie,et al.  Few‐Layered SnS2 on Few‐Layered Reduced Graphene Oxide as Na‐Ion Battery Anode with Ultralong Cycle Life and Superior Rate Capability , 2015 .

[46]  Joseph Paul Baboo,et al.  Amorphous iron phosphate: potential host for various charge carrier ions , 2014 .

[47]  Pooi See Lee,et al.  Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life li-ion batteries. , 2014, ACS nano.

[48]  J. Tu,et al.  MnO/reduced graphene oxide sheet hybrid as an anode for Li-ion batteries with enhanced lithium storage performance , 2012 .

[49]  Zaiping Guo,et al.  K0.25Mn2O4 nanofiber microclusters as high power cathode materials for rechargeable lithium batteries , 2012 .

[50]  Yi Cui,et al.  Copper hexacyanoferrate battery electrodes with long cycle life and high power. , 2011, Nature communications.

[51]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[52]  Eric C. Njagi,et al.  Facile one-step template-free synthesis of uniform hollow microstructures of cryptomelane-type manganese oxide K-OMS-2. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[53]  K. Nakanishi,et al.  The reactions of chromomycinone and derivatives , 1966 .