A Littlewood-Type Theorem for Random Bergman Functions

Let $f(z)=\sum _{n=0}^{\infty }a_n z^n$ be a formal power series with complex coefficients. Let $({\mathcal{R}} f)(z)= \sum _{n=0}^{\infty }\pm a_n z^n$ be the randomization of $f$ by choosing independently a random sign for each coefficient. Let $H^p({\mathbb{D}})$ and $L^p_a({\mathbb{D}})$  $(p>0)$ denote the Hardy space and the Bergman space, respectively, over the unit disk in the complex plane. In 1930, Littlewood proved that if $f \in H^2({\mathbb{D}})$, then ${\mathcal{R}} f \in H^p({\mathbb{D}})$ for any $p \in (0, \infty )$ almost surely, and if $f \notin H^2({\mathbb{D}})$, then ${\mathcal{R}} f \notin H^p({\mathbb{D}})$ for any $p \in (0, \infty )$ almost surely. In this paper, we obtain a characterization of the pairs $(p, q) \in (0, \infty )^2$ such that ${\mathcal{R}} f$ is almost surely in $L^q_a({\mathbb{D}})$ whenever $f \in L^p_a({\mathbb{D}})$, including counterexamples to show the optimality of the embedding. In contrast to Littlewood’s theorem, random Bergman functions exhibit no improvement of regularity for any $p>0$, but the loss of regularity for $p<2$ is not as drastic as the Hardy case; there is indeed a nontrivial boundary curve given by $\frac{1}{q}-\frac{2}{p}+\frac{1}{2}=0$. Several other results about random Bergman functions are established along the way. The technical difficulties, especially when $p<1$, are different from the Hardy space and we devise a different route of proof. The Dirichlet space follows as a corollary. An improvement of the original Littlewood theorem is obtained.

[1]  G. Laumon,et al.  A Series of Modern Surveys in Mathematics , 2000 .

[2]  J. Clunie,et al.  On Bloch functions and normal functions. , 1974 .

[3]  W. Sledd Some Results About Spaces of Analytic Functions Introduced by Hardy and Littlewood , 1974 .

[4]  Ó. Blasco Multipliers on Spaces of Analytic Functions , 1995, Canadian Journal of Mathematics.

[5]  Elliot Paquette,et al.  Gaussian analytic functions of bounded mean oscillation. , 2020, 2002.00804.

[6]  A Blaschke-type product and random zero sets for Bergman spaces , 1992 .

[7]  Zeros of random functions in Bergman spaces , 1979 .

[8]  Universality and scaling of correlations between zeros on complex manifolds , 1999, math-ph/9904020.

[9]  S. Kwapień,et al.  Random Series and Stochastic Integrals: Single and Multiple , 1992 .

[10]  Chao Liu Multipliers for Dirichlet type spaces by randomization , 2020, Banach Journal of Mathematical Analysis.

[11]  P. Koskela,et al.  Fractional integration, differentiation, and weighted Bergman spaces , 1999, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  A. Offord The distribution of the values of an entire function whose coefficients are independent random variables (II) , 1995, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  Kehe Zhu Operator theory in function spaces , 1990 .

[14]  S. Rice Mathematical analysis of random noise , 1944 .

[15]  Yuval Peres,et al.  Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process , 2003, math/0310297.

[16]  R. Paley,et al.  On some series of functions, (3) , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  Bergman and Hardy spaces with small exponents. , 1994 .

[18]  Mikhail Sodin Zeroes of Gaussian analytic functions , 2000 .

[19]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[20]  N. Shah,et al.  About Pure and Applied Mathematics , 2018 .

[21]  F. Nazarov,et al.  Random Complex Zeroes and Random Nodal Lines , 2010, 1003.4237.

[22]  Random complex zeroes, I. Asymptotic normality , 2002, math/0210090.

[23]  Fuchang Gao A Characterization of Random Bloch Functions , 2000 .

[24]  Mackey topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces , 1976 .

[25]  Random Dirichlet Functions: Multipliers and Smoothness , 1993, Canadian Journal of Mathematics.

[26]  J. Vries De Gruyter Studies in Mathematics , 2014, USCO and Quasicontinuous Mappings.

[27]  R. Salem,et al.  Some properties of trigonometric series whose terms have random signs , 1954 .

[28]  Alan Edelman,et al.  How many zeros of a random polynomial are real , 1995 .

[29]  R. Zhao Pointwise multipliers from weighted Bergman spaces and Hardy spaces to weighted Bergman spaces , 2004 .

[30]  Paul Erdös,et al.  On the Distribution of Roots of Polynomials , 1950 .

[31]  R. Smullyan ANNALS OF MATHEMATICS STUDIES , 1961 .

[32]  D. Stegenga,et al.  AnH1 multiplier theorem , 1981 .

[33]  X. Fang,et al.  A generalization of Littlewood's theorem on random Taylor series via Gaussian processes , 2020, 2007.06285.

[34]  Kehe Zhu Duality of Bloch spaces and norm convergence of Taylor series. , 1991 .

[35]  Zero Sets for Spaces of Analytic Functions , 2017, 1705.03914.

[36]  A. Voros,et al.  Chaotic Eigenfunctions in Phase Space , 1997, chao-dyn/9711016.

[37]  Nigel J. Kalton,et al.  An F-space sampler , 1984 .

[38]  M. Jevtic,et al.  Taylor coefficients and coefficient multipliers of Hardy and Bergman-type spaces , 2016 .