On the rate of convergence of sequential quadratic programming with nondifferentiable exact penalty function in the presence of constraint degeneracy

Abstract.We analyze the convergence of a sequential quadratic programming (SQP) method for nonlinear programming for the case in which the Jacobian of the active constraints is rank deficient at the solution and/or strict complementarity does not hold for some or any feasible Lagrange multipliers. We use a nondifferentiable exact penalty function, and we prove that the sequence generated by an SQP using a line search is locally R-linearly convergent if the matrix of the quadratic program is positive definite and constant over iterations, provided that the Mangasarian-Fromovitz constraint qualification and some second-order sufficiency conditions hold.

[1]  Stephen J. Wright,et al.  Superlinear Convergence of an Interior-Point Method Despite Dependent Constraints , 2000, Math. Oper. Res..

[2]  J. F. Bonnans,et al.  Local analysis of Newton-type methods for variational inequalities and nonlinear programming , 1994 .

[3]  Stephen J. Wright Superlinear Convergence of a Stabilized SQP Method to a Degenerate Solution , 1998, Comput. Optim. Appl..

[4]  Nicholas I. M. Gould,et al.  Lancelot: A FORTRAN Package for Large-Scale Nonlinear Optimization (Release A) , 1992 .

[5]  E. Polak Introduction to linear and nonlinear programming , 1973 .

[6]  A. Shapiro Sensitivity analysis of nonlinear programs and differentiability properties of metric projections , 1988 .

[7]  J. F. Bonnans Local study of Newton type algorithms for constrained problems , 1988 .

[8]  Stephen J. Wright Modifying SQP for Degenerate Problems , 2002, SIAM J. Optim..

[9]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[10]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[11]  Olvi L. Mangasarian,et al.  Exact penalty functions in nonlinear programming , 1979, Math. Program..

[12]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[13]  L. Grippo,et al.  Exact penalty functions in constrained optimization , 1989 .

[14]  A. Ioffe Necessary and Sufficient Conditions for a Local Minimum. 3: Second Order Conditions and Augmented Duality , 1979 .

[15]  Mihai Anitescu,et al.  Degenerate Nonlinear Programming with a Quadratic Growth Condition , 1999, SIAM J. Optim..

[16]  S. M. Robinson Generalized equations and their solutions, part II: Applications to nonlinear programming , 1982 .

[17]  William W. Hager,et al.  Stability in the presence of degeneracy and error estimation , 1999, Math. Program..

[18]  William W. Hager,et al.  Stabilized Sequential Quadratic Programming , 1999, Comput. Optim. Appl..

[19]  Jacques Gauvin,et al.  A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming , 1977, Math. Program..