Evaluation of ST preconditioners for saddle point problems

The general block ST decomposition of the saddle point problem is used as a preconditioner to transform the saddle point problem into an equivalent symmetric and positive definite system. Such a decomposition is called a block ST preconditioner. Two general block ST preconditioners are proposed for saddle point problems with symmetric and positive definite ( 1 , 1 ) -block. Some estimations of the condition number of the preconditioned system are given. The same study is done for singular ( 1 , 1 ) -block.

[1]  Alfredo N. Iusem,et al.  Preconditioned conjugate gradient method for generalized least squares problems , 1996 .

[2]  Philip E. Gill,et al.  Practical optimization , 1981 .

[3]  Stephen J. Wright Stability of Augmented System Factorizations in Interior-Point Methods , 1997, SIAM J. Matrix Anal. Appl..

[4]  J. Pasciak,et al.  A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .

[5]  Gene H. Golub,et al.  On Solving Block-Structured Indefinite Linear Systems , 2003, SIAM J. Sci. Comput..

[6]  Owe Axelsson,et al.  Preconditioning methods for linear systems arising in constrained optimization problems , 2003, Numer. Linear Algebra Appl..

[7]  Jin,et al.  DIRECT ITERATIVE METHODS FOR RANK DEFICIENT GENERALIZED LEAST SQUARES PROBLEMS , 2000 .

[8]  Yuan Jinyun,et al.  Preconditioned sor methods for generalized least-squares problems , 2000 .

[9]  E. Haber,et al.  Numerical methods for volume preserving image registration , 2004 .

[10]  Jinyun Yuan,et al.  Block SOR methods for rank-deficient least-squares problems , 1998 .

[11]  Tom Lyche,et al.  Preconditioned Iterative Methods for Scattered Data Interpolation , 2002, Adv. Comput. Math..

[12]  Michele Benzi,et al.  Spectral Properties of the Hermitian and Skew-Hermitian Splitting Preconditioner for Saddle Point Problems , 2005, SIAM J. Matrix Anal. Appl..

[13]  Kent-André Mardal,et al.  Uniform preconditioners for the time dependent Stokes problem , 2006, Numerische Mathematik.

[14]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[15]  Gene H. Golub,et al.  Symmetric-Triangular Decomposition and its Applications Part I: Theorems and Algorithms , 2002 .

[16]  Howard C. Elman,et al.  Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations , 1996, SIAM J. Sci. Comput..

[17]  Åke Björck,et al.  Numerical methods for least square problems , 1996 .

[18]  Arthur R. Bergen,et al.  Power Systems Analysis , 1986 .

[19]  Gene H. Golub,et al.  Symmetric-triangular decomposition and its applications part II: Preconditioners for indefinite systems , 2008 .

[20]  Gene H. Golub,et al.  Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.

[21]  Å. Björck,et al.  Preconditioners for least squares problems by LU factorization. , 1999 .

[22]  Gene H. Golub,et al.  An Algebraic Analysis of a Block Diagonal Preconditioner for Saddle Point Systems , 2005, SIAM J. Matrix Anal. Appl..

[23]  B. V. Dean,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[24]  Tatjana Stykel,et al.  Balanced truncation model reduction for semidiscretized Stokes equation , 2006 .

[25]  Alla Sheffer,et al.  Preconditioners for Indefinite Linear Systems Arising in Surface Parameterization , 2001, International Meshing Roundtable Conference.

[26]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[27]  H. Elman,et al.  Iterative Methods for Problems in Computational Fluid Dynamics , 1998 .

[28]  Owe Axelsson,et al.  Eigenvalue estimates for preconditioned saddle point matrices , 2006, Numer. Linear Algebra Appl..

[29]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[30]  Alain Bossavit “Mixed” systems of algebraic equations in computational electromagnetism , 1998 .

[31]  Gene H. Golub,et al.  Matrix computations , 1983 .

[32]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[33]  Stephen G. Nash,et al.  Preconditioning Reduced Matrices , 1996, SIAM J. Matrix Anal. Appl..

[34]  X. Wu,et al.  Conjugate Gradient Method for Rank Deficient Saddle Point Problems , 2004, Numerical Algorithms.

[35]  Jinyun Yuan,et al.  Numerical methods for generalized least squares problems , 1996 .

[36]  Gene H. Golub,et al.  SOR-like Methods for Augmented Systems , 2001 .

[37]  Michele Benzi,et al.  On the eigenvalues of a class of saddle point matrices , 2006, Numerische Mathematik.

[38]  Ernest L. Hall,et al.  Computer Image Processing and Recognition , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  E. Haber,et al.  Preconditioned all-at-once methods for large, sparse parameter estimation problems , 2001 .

[40]  J. Y. Yuan,et al.  Preconditioned conjugate gradient method for rank deficient least-squares problems , 1999, Int. J. Comput. Math..