Just So Stories about the Evolution of Apoptosis

[1]  G. Salvesen,et al.  Protease signaling in animal and plant‐regulated cell death , 2016, The FEBS journal.

[2]  Yigong Shi,et al.  Atomic structure of the apoptosome: mechanism of cytochrome c- and dATP-mediated activation of Apaf-1 , 2015, Genes & development.

[3]  S. Kummerfeld,et al.  Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling , 2015, Nature.

[4]  T. Cai,et al.  Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death , 2015, Nature.

[5]  David Bryant,et al.  Endosymbiotic origin and differential loss of eukaryotic genes , 2015, Nature.

[6]  R. Strich Programmed Cell Death Initiation and Execution in Budding Yeast , 2015, Genetics.

[7]  R. Rachel,et al.  Cytochromes c in Archaea: distribution, maturation, cell architecture, and the special case of Ignicoccus hospitalis , 2015, Front. Microbiol..

[8]  S. Tait,et al.  Mitochondrial apoptosis: killing cancer using the enemy within , 2015, British Journal of Cancer.

[9]  J. Mottram,et al.  Comparative structural analysis of the caspase family with other clan CD cysteine peptidases , 2015, The Biochemical journal.

[10]  Yigong Shi,et al.  Structure of the apoptosome: mechanistic insights into activation of an initiator caspase from Drosophila , 2015, Genes & development.

[11]  D. Newmeyer,et al.  Mitochondrial shape governs BAX-induced membrane permeabilization and apoptosis. , 2015, Molecular cell.

[12]  K. Segawa,et al.  Clearance of Apoptotic Cells and Pyrenocytes. , 2015, Current topics in developmental biology.

[13]  P. Li,et al.  Inflammatory caspases are innate immune receptors for intracellular LPS , 2014, Nature.

[14]  K. Barott,et al.  Evolution of TNF-induced apoptosis reveals 550 My of functional conservation , 2014, Proceedings of the National Academy of Sciences.

[15]  Takaki Maekawa,et al.  Evolution and Conservation of Plant NLR Functions , 2013, Front. Immunol..

[16]  Yigong Shi,et al.  Mechanistic insights into CED-4-mediated activation of CED-3 , 2013, Genes & development.

[17]  G. Wörheide,et al.  Novel scenarios of early animal evolution--is it time to rewrite textbooks? , 2013, Integrative and comparative biology.

[18]  D. Green,et al.  BID-induced structural changes in BAK promote apoptosis , 2013, Nature Structural &Molecular Biology.

[19]  A. Godzik,et al.  Evolution of the animal apoptosis network. , 2013, Cold Spring Harbor perspectives in biology.

[20]  Erinna F. Lee,et al.  Bax Crystal Structures Reveal How BH3 Domains Activate Bax and Nucleate Its Oligomerization to Induce Apoptosis , 2013, Cell.

[21]  B. Lang,et al.  Strikingly Bacteria-Like and Gene-Rich Mitochondrial Genomes throughout Jakobid Protists , 2013, Genome biology and evolution.

[22]  Michelle Chen,et al.  Drosophila larvae lacking the bcl-2 gene, buffy, are sensitive to nutrient stress, maintain increased basal target of rapamycin (Tor) signaling and exhibit characteristics of altered basal energy metabolism , 2012, BMC Biology.

[23]  D. Green,et al.  Mitochondrial pathway of apoptosis is ancestral in metazoans , 2012, Proceedings of the National Academy of Sciences.

[24]  C. Muñoz-Pinedo Signaling pathways that regulate life and cell death: evolution of apoptosis in the context of self-defense. , 2012, Advances in experimental medicine and biology.

[25]  R A Knight,et al.  Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012 , 2011, Cell Death and Differentiation.

[26]  C. Ewen,et al.  A quarter century of granzymes , 2011, Cell Death and Differentiation.

[27]  Thijs J. G. Ettema,et al.  The archaeal 'TACK' superphylum and the origin of eukaryotes. , 2011, Trends in microbiology.

[28]  A. Gardner,et al.  The Meaning of Death: Evolution and Ecology of Apoptosis in Protozoan Parasites , 2011, PLoS pathogens.

[29]  M. Ramsdale,et al.  Proteases and caspase-like activity in the yeast Saccharomyces cerevisiae. , 2011, Biochemical Society transactions.

[30]  S. Rolland,et al.  A molecular switch that governs mitochondrial fusion and fission mediated by the BCL2-like protein CED-9 of Caenorhabditis elegans , 2011, Proceedings of the National Academy of Sciences.

[31]  E. Crawford,et al.  Caspase substrates and cellular remodeling. , 2011, Annual review of biochemistry.

[32]  P. Epple,et al.  Programmed cell death in the plant immune system , 2011, Cell Death and Differentiation.

[33]  Soojay Banerjee,et al.  The soluble form of Bax regulates mitochondrial fusion via MFN2 homotypic complexes. , 2011, Molecular cell.

[34]  K. McCall,et al.  Bcl-2 proteins and autophagy regulate mitochondrial dynamics during programmed cell death in the Drosophila ovary , 2011, Development.

[35]  D. Green,et al.  Means to an end : apoptosis and other cell death mechanisms , 2011 .

[36]  D. Green,et al.  Mitochondria and cell death: outer membrane permeabilization and beyond , 2010, Nature Reviews Molecular Cell Biology.

[37]  A second signal for autophagic cell death? , 2010, Autophagy.

[38]  J. Söding,et al.  The molecular cell death machinery in the simple cnidarian Hydra includes an expanded caspase family and pro- and anti-apoptotic Bcl-2 proteins , 2010, Cell Research.

[39]  D. Green,et al.  The BCL-2 family reunion. , 2010, Molecular cell.

[40]  D. Green,et al.  Cell death and tissue remodeling in planarian regeneration. , 2010, Developmental biology.

[41]  P. Hussey,et al.  Tudor staphylococcal nuclease is an evolutionarily conserved component of the programmed cell death degradome , 2009, Nature Cell Biology.

[42]  Wan-Jin Lu,et al.  The Bax/Bak ortholog in Drosophila, Debcl, exerts limited control over programmed cell death , 2009, Development.

[43]  H. Steller,et al.  Regulation of apoptosis in Drosophila , 2008, Cell Death and Differentiation.

[44]  D. Green,et al.  Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways , 2008, Cell Death and Differentiation.

[45]  K. White,et al.  Mitochondrial disruption in Drosophila apoptosis. , 2007, Developmental cell.

[46]  J. Doumanis,et al.  Molecular determinants of the subcellular localization of the Drosophila Bcl-2 homologues DEBCL and BUFFY , 2007, Cell Death and Differentiation.

[47]  H. Engelberg-Kulka,et al.  Bacterial Programmed Cell Death and Multicellular Behavior in Bacteria , 2006, PLoS genetics.

[48]  R. J. Clem,et al.  Lack of involvement of mitochondrial factors in caspase activation in a Drosophila cell-free system , 2006, Cell Death and Differentiation.

[49]  Colin Adrain,et al.  Role for CED-9 and Egl-1 as regulators of mitochondrial fission and fusion dynamics. , 2006, Molecular cell.

[50]  A. Bergmann,et al.  The two Drosophila cytochrome C proteins can function in both respiration and caspase activation , 2006, The EMBO journal.

[51]  Huilin Li,et al.  Structure of the CED-4–CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans , 2005, Nature.

[52]  R. Jagasia,et al.  DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans , 2005, Nature.

[53]  Y. Lazebnik,et al.  The two cytochrome c species, DC3 and DC4, are not required for caspase activation and apoptosis in Drosophila cells , 2004, The Journal of cell biology.

[54]  D. Green,et al.  A unified model for apical caspase activation. , 2003, Molecular cell.

[55]  J. Ameisen On the origin, evolution, and nature of programmed cell death: a timeline of four billion years , 2002, Cell Death and Differentiation.

[56]  D. Green,et al.  Infection and the origins of apoptosis , 2002, Cell Death and Differentiation.

[57]  D. Green,et al.  The role of ARK in stress-induced apoptosis in Drosophila cells , 2002, The Journal of cell biology.

[58]  Sharad Kumar,et al.  The role of cytochrome c in caspase activation in Drosophila melanogaster cells , 2002, The Journal of cell biology.

[59]  B. Diehl-seifert,et al.  Sponge Bcl-2 homologous protein (BHP2-GC) confers distinct stress resistance to human HEK-293 cells , 2001, Cell Death and Differentiation.

[60]  D. Green,et al.  Do inducers of apoptosis trigger caspase-independent cell death? , 2005, Nature Reviews Molecular Cell Biology.

[61]  G. Salvesen,et al.  Caspase activation: the induced-proximity model. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[62]  G. Salvesen,et al.  National Academy of Sciences colloquium “ Proteolytic Processing and Physiological Regulation , ” held February 20 – 21 , 1999 , at the Arnold and Mabel Beckman Center in Irvine , CA . Caspase activation : The induced-proximity model , 1999 .

[63]  T. Sicheritz-Pontén,et al.  The genome sequence of Rickettsia prowazekii and the origin of mitochondria , 1998, Nature.

[64]  Xiaodong Wang,et al.  Apaf-1, a Human Protein Homologous to C. elegans CED-4, Participates in Cytochrome c–Dependent Activation of Caspase-3 , 1997, Cell.

[65]  R. Meadows,et al.  X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death , 1996, Nature.

[66]  H. Horvitz,et al.  C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2 , 1994, Cell.