Regularization of linear inverse problems with total generalized variation

Abstract The regularization properties of the total generalized variation (TGV) functional for the solution of linear inverse problems by means of Tikhonov regularization are studied. Considering the associated minimization problem for general symmetric tensor fields, the well-posedness is established in the space of symmetric tensor fields of bounded deformation, a generalization of the space of functions of bounded variation. Convergence for vanishing noise level is shown in a multiple regularization parameter framework in terms of the naturally arising notion of TGV-strict convergence. Finally, some basic properties, in particular non-equivalence for different parameters, are discussed for this notion.

[1]  Roger Temam,et al.  Functions of bounded deformation , 1980 .

[2]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[3]  Roger Temam,et al.  Mathematical Problems in Plasticity , 1985 .

[4]  H. Attouch,et al.  Duality for the Sum of Convex Functions in General Banach Spaces , 1986 .

[5]  L. Evans Measure theory and fine properties of functions , 1992 .

[6]  C. Vogel,et al.  Analysis of bounded variation penalty methods for ill-posed problems , 1994 .

[7]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[8]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[9]  O. Scherzer,et al.  A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators , 2007 .

[10]  O. Scherzer,et al.  Discretization of variational regularization in Banach spaces , 2010, 1004.2838.

[11]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[12]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[13]  J. Borwein,et al.  Convex Functions: Constructions, Characterizations and Counterexamples , 2010 .

[14]  A. Neubauer,et al.  Improved and extended results for enhanced convergence rates of Tikhonov regularization in Banach spaces , 2010 .

[15]  Shuai Lu,et al.  Multi-parameter regularization and its numerical realization , 2011, Numerische Mathematik.

[16]  Kristian Bredies,et al.  Recovering Piecewise Smooth Multichannel Images by Minimization of Convex Functionals with Total Generalized Variation Penalty , 2011, Efficient Algorithms for Global Optimization Methods in Computer Vision.

[17]  T. Pock,et al.  Second order total generalized variation (TGV) for MRI , 2011, Magnetic resonance in medicine.

[18]  Bangti Jin,et al.  Multi-Parameter Tikhonov Regularization , 2011, ArXiv.

[19]  Markus Grasmair,et al.  Multi-parameter Tikhonov Regularisation in Topological Spaces , 2011, 1109.0364.

[20]  K. Kunisch,et al.  Properties of L 1-TGV 2 : The one-dimensional case , 2011 .

[21]  K. Bredies,et al.  Parallel imaging with nonlinear reconstruction using variational penalties , 2012, Magnetic resonance in medicine.

[22]  Barbara Kaltenbacher,et al.  Regularization Methods in Banach Spaces , 2012, Radon Series on Computational and Applied Mathematics.

[23]  Kristian Bredies,et al.  Artifact-Free Decompression and Zooming of JPEG Compressed Images with Total Generalized Variation , 2012, VISIGRAPP.

[24]  Kristian Bredies,et al.  Total Generalized Variation in Diffusion Tensor Imaging , 2013, SIAM J. Imaging Sci..

[25]  Kristian Bredies,et al.  TGV for diffusion tensors: A comparison of fidelity functions , 2013 .

[26]  K. Bredies Symmetric tensor fields of bounded deformation , 2013 .

[27]  Valeriya Naumova,et al.  Multi-penalty regularization with a component-wise penalization , 2013 .

[28]  K. Kunisch,et al.  Properties of L1-TGV2: The one-dimensional case , 2013 .

[29]  Kristian Bredies,et al.  A TGV Regularized Wavelet Based Zooming Model , 2013, SSVM.

[30]  M. Holler Higher order regularization for model based data decompression / vorgelegt von Martin Holler , 2013 .

[31]  Maxim Zaitsev,et al.  Reconstruction of undersampled radial PatLoc imaging using total generalized variation , 2012, Magnetic resonance in medicine.