Epilepsy, Schizophrenia, and the Extended Amygdala

ABSTRACT: Propagation and prolongation of rapid neuronal discharge underlies the epilepsies. However, episodic focal rapid neuronal discharges limited to discrete nuclei and pathways of the amygdala‐hippocampal‐septal‐hypothalamic networks are the language of physiologic message systems for endocrine regulation and reproductive activities vital to the survival of the organism and the species. To prevent prolongation and propagation of physiologic pulsed excitation to areas outside specific networks and resultant epileptic seizures, these discharges must be limited in extent and time by powerful inhibitory processes. The nucleus accumbens, a unit of the extended amygdala, and the monoamines and GABA are components of the inhibitory networks that restrict physiologic rapid discharge in duration and in location. In parallel to the relationship of excessive neuronal excitation to epilepsy, evidence will be presented that excessive inhibition via one or more components of these inhibitory networks or diminished excitation underlies development of some psychoses, including schizophrenia.

[1]  F. Benes,et al.  Reduced neuronal size in posterior hippocampus of schizophrenic patients. , 1991, Schizophrenia bulletin.

[2]  James D. Christensen,et al.  Progression of cerebroventricular enlargement and the subtyping of schizophrenia , 1997, Psychiatry Research: Neuroimaging.

[3]  A. Scheibel,et al.  A neurohistological correlate of schizophrenia. , 1984, Biological psychiatry.

[4]  Douglas W. Jones,et al.  Superior temporal gyrus volume in schizophrenia: a study using MRI morphometry assisted by surface rendering. , 1996, The American journal of psychiatry.

[5]  L. DeLisi,et al.  Schizophrenia as a chronic active brain process: a study of progressive brain structural change subsequent to the onset of schizophrenia , 1997, Psychiatry Research: Neuroimaging.

[6]  K O Lim,et al.  Widespread cerebral gray matter volume deficits in schizophrenia. , 1992, Archives of general psychiatry.

[7]  A. Deutch,et al.  Antipsychotic drugs induce Fos protein in the thalamic paraventricular nucleus: a novel locus of antipsychotic drug action , 1995, Neuroscience.

[8]  D L Braff,et al.  Magnetic resonance imaging abnormalities in lenticular nuclei and cerebral cortex in schizophrenia. , 1991, Archives of general psychiatry.

[9]  F. Benes,et al.  Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. , 1991, Archives of general psychiatry.

[10]  E. G. Jones,et al.  Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. , 1995, Archives of general psychiatry.

[11]  Paul J. Harrison,et al.  Altered synaptophysin expression as a marker of synaptic pathology in schizophrenia , 1995, Neuroscience.

[12]  J J Kim,et al.  Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. , 1993, Archives of general psychiatry.

[13]  M S Buchsbaum,et al.  PET and MRI of the thalamus in never-medicated patients with schizophrenia. , 1996, The American journal of psychiatry.

[14]  J Q Trojanowski,et al.  Abnormal expression of two microtubule-associated proteins (MAP2 and MAP5) in specific subfields of the hippocampal formation in schizophrenia. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J. Stevens,et al.  Sensitization with Clozapine: Beyond the Dopamine Hypothesis , 1997, Biological Psychiatry.

[16]  J. Lieberman,et al.  Time course and biologic correlates of treatment response in first-episode schizophrenia. , 1993, Archives of general psychiatry.

[17]  N. Perrone-Bizzozero,et al.  Levels of the growth-associated protein GAP-43 are selectively increased in association cortices in schizophrenia. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[18]  S. Heckers,et al.  Cortex, white matter, and basal ganglia in schizophrenia: A volumetric postmortem study , 1991, Biological Psychiatry.

[19]  B. Bogerts,et al.  Limbic pathology in schizophrenia: The entorhinal region—a morphometric study , 1988, Biological Psychiatry.

[20]  J. Stevens Psychomotor Epilepsy and Schizophrenia: A Common Anatomy? , 1973 .

[21]  B. Bogerts,et al.  Basal Ganglia and Limbic System Pathology in Schizophrenia: A Morphometric Study of Brain Volume and Shrinkage , 1985 .

[22]  R. Coppola,et al.  Hat Size in Schizophrenia , 1987 .

[23]  S. Pacia,et al.  Clozapine‐related seizures , 1994, Neurology.

[24]  E. Knobil,et al.  Remembrance: the discovery of the hypothalamic gonadotropin-releasing hormone pulse generator and of its physiological significance. , 1992, Endocrinology.

[25]  E. B. Southard,et al.  ON THE TOPOGRAPHICAL DISTRIBUTION OF CORTEX LESIONS AND ANOMALIES IN DEMENTIA PRÆCOX, WITH SOME ACCOUNT OF THEIR FUNCTIONAL SIGNIFICANCE , 1914 .

[26]  R. Saunders,et al.  A qualitative and quantitative analysis of the entorhinal cortex in schizophrenia. , 1997, Cerebral cortex.

[27]  L. Binswanger [Studies on schizophrenia]. , 1952, Schweizer Archiv fur Neurologie und Psychiatrie. Archives suisses de neurologie et de psychiatrie. Archivio svizzero di neurologia e psichiatria.

[28]  Hankoff Ld,et al.  Neuropathology of the brain stem in psychiatric disorders. , 1981 .

[29]  G. V. Goddard,et al.  A permanent change in brain function resulting from daily electrical stimulation. , 1969, Experimental neurology.

[30]  Marcel F. Neuts,et al.  Matrix-analytic methods in queuing theory☆ , 1984 .

[31]  J. Csernansky,et al.  Dopaminergic supersensitivity at distant sites following induced epileptic foci. , 1983, Life sciences.

[32]  A. Scheibel,et al.  Hippocampal pyramidal cell orientation in schizophrenia. A controlled neurohistologic study of the Yakovlev collection. , 1987, Archives of general psychiatry.

[33]  J. Stevens Clozapine: The Yin and Yang of seizures and psychosis , 1995, Biological Psychiatry.

[34]  B. Meldrum Update on the Mechanism of Action of Antiepileptic Drugs , 1996, Epilepsia.

[35]  M. Sawa EPILEPTOID PSYCHOSIS: A GROUP OF ATYPICAL ENDOGENOUS PSYCHOSES , 1963, Folia psychiatrica et neurologica japonica.

[36]  N. W. Winkelman,et al.  OBSERVATIONS ON THE HISTOPATHOLOGY OF SCHIZOPHRENIA , 1949 .

[37]  E. Terasawa,et al.  Changes in multiple unit activity of the brain during the estrous cycle. , 1970, Neuroendocrinology.

[38]  J. Ehrhardt,et al.  Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging. , 1994, Science.

[39]  E. Evarts,et al.  Spontaneous Discharge of Single Neurons during Sleep and Waking , 1962, Science.

[40]  Paul J. Harrison,et al.  Decreased expression of mRNAs encoding non-NMDA glutamate receptors GluR1 and GluR2 in medial temporal lobe neurons in schizophrenia. , 1995, Brain research. Molecular brain research.

[41]  F. Benes,et al.  Increased density of glutamate-immunoreactive vertical processes in superficial laminae in cingulate cortex of schizophrenic brain. , 1992, Cerebral cortex.

[42]  C. Frith,et al.  Epilepsy, psychosis, and schizophrenia , 1994, Neurology.

[43]  A. Malhotra,et al.  Clozapine Blunts N-Methyl-d-Aspartate Antagonist-Induced Psychosis: A Study with Ketamine , 1997, Biological Psychiatry.

[44]  J. Stevens,et al.  Clozapine and seizures , 1995, Biological Psychiatry.

[45]  S. Heckers,et al.  Limbic structures and lateral ventricle in schizophrenia. A quantitative postmortem study. , 1990, Archives of general psychiatry.

[46]  M. LeMay,et al.  Abnormalities of the left temporal lobe and thought disorder in schizophrenia. A quantitative magnetic resonance imaging study. , 1992, The New England journal of medicine.

[47]  P. Linkowski,et al.  Circadian and sleep-related endocrine rhythms in schizophrenia. , 1991, Archives of general psychiatry.

[48]  S. Charles Schulz,et al.  Meta-analysis of brain and cranial size in schizophrenia , 1996, Schizophrenia Research.

[49]  T. Ordög,et al.  On the role of gonadotropin-releasing hormone (GnRH) in the operation of the GnRH pulse generator in the rhesus monkey. , 1997, Neuroendocrinology.

[50]  J. Stevens,et al.  Abnormal reinnervation as a basis for schizophrenia: a hypothesis. , 1992, Archives of general psychiatry.

[51]  W. Iacono,et al.  Ventricular and sulcal size at the onset of psychosis. , 1988, The American journal of psychiatry.

[52]  C A Sandman,et al.  Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. , 1993, Archives of general psychiatry.

[53]  B. Pakkenberg,et al.  Total nerve cell number in neocortex in chronic schizophrenics and controls estimated using optical disectors , 1993, Biological Psychiatry.

[54]  T. Uemura,et al.  Electrophysiological correlates of pulsatile gonadotropin release in rats. , 1982, Neuroendocrinology.

[55]  T. Crow,et al.  Schizophrenia and the brain: a prospective clinico-neuropathological study , 1990, Psychological Medicine.

[56]  A. Malhotra,et al.  Spectrum of EEG abnormalities during clozapine treatment. , 1994, Electroencephalography and Clinical Neurophysiology.

[57]  G D Pearlson,et al.  Planum temporale asymmetry reversal in schizophrenia: replication and relationship to gray matter abnormalities. , 1997, The American journal of psychiatry.

[58]  N. Peress,et al.  Neuropathology of the brain stem in psychiatric disorders. , 1981, Biological psychiatry.

[59]  D. Weinberger,et al.  Normal Asymmetry of the Planum Temporale in Patients with Schizophrenia , 1995, British Journal of Psychiatry.

[60]  B. Pakkenberg,et al.  The volume of the mediodorsal thalamic nucleus in treated and untreated schizophrenics , 1992, Schizophrenia Research.

[61]  J. Kelsoe,et al.  Quantitative neuroanatomy in schizophrenia. A controlled magnetic resonance imaging study. , 1988, Archives of general psychiatry.

[62]  D. Weinberger,et al.  Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. , 1990, The New England journal of medicine.

[63]  G. Golarai,et al.  Assessing the functional significance of mossy fiber sprouting. , 1992, Epilepsy research. Supplement.

[64]  P. Goldman-Rakic,et al.  Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. , 1995, Archives of general psychiatry.

[65]  N. Geschwind,et al.  Neuroendocrine dysfunction in temporal lobe epilepsy. , 1982, Archives of neurology.

[66]  H. Roffwarg,et al.  Human puberty. Simultaneous augmented secretion of luteinizing hormone and testosterone during sleep. , 1974, The Journal of clinical investigation.

[67]  F. Benes,et al.  Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects , 1996, Neuroscience.

[68]  B T Hyman,et al.  Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. , 1991, Archives of general psychiatry.

[69]  T. Babb,et al.  Glutamate AMPA receptors in the fascia dentata of human and kainate rat hippocampal epilepsy , 1996, Epilepsy Research.

[70]  B. Pakkenberg,et al.  Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. , 1990, Archives of general psychiatry.

[71]  J. Stevens An anatomy of schizophrenia? , 1973, Archives of general psychiatry.

[72]  K. Jellinger,et al.  The neuropathology of schizophrenia. , 1999, Journal of neuropathology and experimental neurology.

[73]  H. Hampel,et al.  Fibrin degradation products in post mortem brain tissue of schizophrenics: a possible marker for underlying inflammatory processes , 1996, Schizophrenia Research.

[74]  R. Gur,et al.  Mesolimbic dopamine D3 receptors and use of antipsychotics in patients with schizophrenia. A postmortem study. , 1997, Archives of general psychiatry.

[75]  S. Lewis Computerised Tomography in Schizophrenia 15 Years On , 1990, British Journal of Psychiatry.