Unconditional optimal error estimates for BDF2-FEM for a nonlinear Schrödinger equation

Abstract This paper analyzes unconditional optimal error estimates for a 2-step backward differentiation formula (BDF2) method for a nonlinear Schrodinger equation. In the analysis, we split an error estimate into two parts, one from the spatial discretization and the other from the temporal discretization. We present the boundedness of the solution of the time-discrete system in the certain strong norms, and the error estimates for time discretization. By these boundedness and temporal error estimates, we obtain the L 2 error estimates without any conditions on a time step size. Numerical experiments are provided to validate our analysis and check the efficiency of our method.

[1]  Stig Larsson,et al.  Linearly Implicit Finite Element Methods for the Time-Dependent Joule Heating Problem , 2005 .

[2]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[3]  G. Akrivis,et al.  On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .

[4]  Jilu Wang,et al.  A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..

[5]  Michel C. Delfour,et al.  Finite-difference solutions of a non-linear Schrödinger equation , 1981 .

[6]  Weiwei Sun,et al.  Unconditionally Optimal Error Estimates of a Crank-Nicolson Galerkin Method for the Nonlinear Thermistor Equations , 2012, SIAM J. Numer. Anal..

[7]  Jean-Luc Guermond,et al.  Convergence Analysis of a Finite Element Projection/Lagrange-Galerkin Method for the Incompressible Navier-Stokes Equations , 2000, SIAM J. Numer. Anal..

[8]  Ohannes A. Karakashian,et al.  On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations , 1982 .

[9]  Weiwei Sun,et al.  Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..

[10]  Zhangxin Chen,et al.  Unconditional convergence and optimal error estimates of the Euler semi-implicit scheme for a generalized nonlinear Schrödinger equation , 2016, Adv. Comput. Math..

[11]  Sergey Leble,et al.  On convergence and stability of a numerical scheme of Coupled Nonlinear Schrödinger Equations , 2008, Comput. Math. Appl..

[12]  Yinnian He Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations , 2015 .

[13]  Jie Liu,et al.  Simple and Efficient ALE Methods with Provable Temporal Accuracy up to Fifth Order for the Stokes Equations on Time Varying Domains , 2013, SIAM J. Numer. Anal..

[14]  Weiwei Sun,et al.  Optimal Error Estimates of Linearized Crank-Nicolson Galerkin FEMs for the Time-Dependent Ginzburg-Landau Equations in Superconductivity , 2014, SIAM J. Numer. Anal..

[15]  Yinnian He,et al.  The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data , 2008, Math. Comput..

[16]  Weizhu Bao,et al.  Uniform Error Estimates of Finite Difference Methods for the Nonlinear Schrödinger Equation with Wave Operator , 2012, SIAM J. Numer. Anal..

[17]  Y. Tourigny,et al.  Optimal H1 Estimates for two Time-discrete Galerkin Approximations of a Nonlinear Schrödinger Equation , 1991 .

[18]  Weiwei Sun,et al.  Error Estimates of Splitting Galerkin Methods for Heat and Sweat Transport in Textile Materials , 2013, SIAM J. Numer. Anal..

[19]  Georgios E. Zouraris,et al.  On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation , 2001 .

[20]  Weiwei Sun,et al.  Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations , 2007, Math. Comput..

[21]  Zhi-Zhong Sun,et al.  On the L∞ convergence of a difference scheme for coupled nonlinear Schrödinger equations , 2010, Comput. Math. Appl..

[22]  M. Feit,et al.  Solution of the Schrödinger equation by a spectral method , 1982 .

[23]  MAX GUNZBURGER,et al.  EFFICIENT AND LONG-TIME ACCURATE SECOND-ORDER METHODS FOR STOKES-DARCY SYSTEMS , 2012 .

[24]  Weiwei Sun,et al.  Linearized FE Approximations to a Nonlinear Gradient Flow , 2013, SIAM J. Numer. Anal..

[25]  Weiwei Sun,et al.  Finite difference methods for a nonlinear and strongly coupled heat and moisture transport system in textile materials , 2012, Numerische Mathematik.

[26]  Weiwei Sun,et al.  Optimal error analysis of Crank-Nicolson schemes for a coupled nonlinear Schrödinger system in 3D , 2017, J. Comput. Appl. Math..

[27]  Jian Li,et al.  A penalty finite element method based on the Euler implicit/explicit scheme for the time-dependent Navier-Stokes equations , 2010, J. Comput. Appl. Math..

[28]  Buyang Li,et al.  Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations , 2012, 1208.4698.

[29]  Xiaonan Wu,et al.  Analysis of finite element method for one-dimensional time-dependent Schrödinger equation on unbounded domain , 2008 .