Unconditional optimal error estimates for BDF2-FEM for a nonlinear Schrödinger equation
暂无分享,去创建一个
Zhangxin Chen | Jian Li | Wentao Cai | Zhangxin Chen | Jian Li | Wentao Cai
[1] Stig Larsson,et al. Linearly Implicit Finite Element Methods for the Time-Dependent Joule Heating Problem , 2005 .
[2] J. Lambert. Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .
[3] G. Akrivis,et al. On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .
[4] Jilu Wang,et al. A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..
[5] Michel C. Delfour,et al. Finite-difference solutions of a non-linear Schrödinger equation , 1981 .
[6] Weiwei Sun,et al. Unconditionally Optimal Error Estimates of a Crank-Nicolson Galerkin Method for the Nonlinear Thermistor Equations , 2012, SIAM J. Numer. Anal..
[7] Jean-Luc Guermond,et al. Convergence Analysis of a Finite Element Projection/Lagrange-Galerkin Method for the Incompressible Navier-Stokes Equations , 2000, SIAM J. Numer. Anal..
[8] Ohannes A. Karakashian,et al. On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations , 1982 .
[9] Weiwei Sun,et al. Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..
[10] Zhangxin Chen,et al. Unconditional convergence and optimal error estimates of the Euler semi-implicit scheme for a generalized nonlinear Schrödinger equation , 2016, Adv. Comput. Math..
[11] Sergey Leble,et al. On convergence and stability of a numerical scheme of Coupled Nonlinear Schrödinger Equations , 2008, Comput. Math. Appl..
[12] Yinnian He. Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations , 2015 .
[13] Jie Liu,et al. Simple and Efficient ALE Methods with Provable Temporal Accuracy up to Fifth Order for the Stokes Equations on Time Varying Domains , 2013, SIAM J. Numer. Anal..
[14] Weiwei Sun,et al. Optimal Error Estimates of Linearized Crank-Nicolson Galerkin FEMs for the Time-Dependent Ginzburg-Landau Equations in Superconductivity , 2014, SIAM J. Numer. Anal..
[15] Yinnian He,et al. The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data , 2008, Math. Comput..
[16] Weizhu Bao,et al. Uniform Error Estimates of Finite Difference Methods for the Nonlinear Schrödinger Equation with Wave Operator , 2012, SIAM J. Numer. Anal..
[17] Y. Tourigny,et al. Optimal H1 Estimates for two Time-discrete Galerkin Approximations of a Nonlinear Schrödinger Equation , 1991 .
[18] Weiwei Sun,et al. Error Estimates of Splitting Galerkin Methods for Heat and Sweat Transport in Textile Materials , 2013, SIAM J. Numer. Anal..
[19] Georgios E. Zouraris,et al. On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation , 2001 .
[20] Weiwei Sun,et al. Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations , 2007, Math. Comput..
[21] Zhi-Zhong Sun,et al. On the L∞ convergence of a difference scheme for coupled nonlinear Schrödinger equations , 2010, Comput. Math. Appl..
[22] M. Feit,et al. Solution of the Schrödinger equation by a spectral method , 1982 .
[23] MAX GUNZBURGER,et al. EFFICIENT AND LONG-TIME ACCURATE SECOND-ORDER METHODS FOR STOKES-DARCY SYSTEMS , 2012 .
[24] Weiwei Sun,et al. Linearized FE Approximations to a Nonlinear Gradient Flow , 2013, SIAM J. Numer. Anal..
[25] Weiwei Sun,et al. Finite difference methods for a nonlinear and strongly coupled heat and moisture transport system in textile materials , 2012, Numerische Mathematik.
[26] Weiwei Sun,et al. Optimal error analysis of Crank-Nicolson schemes for a coupled nonlinear Schrödinger system in 3D , 2017, J. Comput. Appl. Math..
[27] Jian Li,et al. A penalty finite element method based on the Euler implicit/explicit scheme for the time-dependent Navier-Stokes equations , 2010, J. Comput. Appl. Math..
[28] Buyang Li,et al. Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations , 2012, 1208.4698.
[29] Xiaonan Wu,et al. Analysis of finite element method for one-dimensional time-dependent Schrödinger equation on unbounded domain , 2008 .