Rough sets for pattern classification using pairwise-comparison-based tables

Abstract Rough set theory is a useful mathematical tool to deal with vagueness and uncertainty in available information. The results of a rough set approach are usually presented in the form of a set of decision rules derived from a decision table. Because using the original decision table is not the only way to implement a rough set approach, it could be interesting to investigate possible improvement in classification performance by replacing the original table with an alternative table obtained by pairwise comparisons among patterns. In this paper, a decision table based on pairwise comparisons is generated using the preference relation as in the Preference Ranking Organization Methods for Enrichment Evaluations (PROMETHEE) methods, to gauges the intensity of preference for one pattern over another pattern on each criterion before classification. The rough-set-based rule classifier (RSRC) provided by the well-known library for the Rough Set Exploration System (RSES) running under Windows as been successfully used to generate decision rules by using the pairwise-comparisons-based tables. Specifically, parameters related to the preference function on each criterion have been determined using a genetic-algorithm-based approach. Computer simulations involving several real-world data sets have revealed that of the proposed classification method performs well compared to other well-known classification methods and to RSRC using the original tables.

[1]  Sam Kwong,et al.  Genetic Algorithms : Concepts and Designs , 1998 .

[2]  David L. Olson,et al.  Comparison of three multicriteria methods to predict known outcomes , 2001, Eur. J. Oper. Res..

[3]  L. Polkowski Rough Sets: Mathematical Foundations , 2013 .

[4]  Andrzej Osyczka,et al.  Evolutionary Algorithms for Single and Multicriteria Design Optimization , 2001 .

[5]  Jean Pierre Brans,et al.  A PREFERENCE RANKING ORGANIZATION METHOD , 1985 .

[6]  Ludmila I. Kuncheva,et al.  Fuzzy Classifier Design , 2000, Studies in Fuzziness and Soft Computing.

[7]  Jan G. Bazan,et al.  Rough set algorithms in classification problem , 2000 .

[8]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[9]  Andrzej Skowron,et al.  A Hierarchical Approach to Multimodal Classification , 2005, RSFDGrC.

[10]  Marcin S. Szczuka,et al.  A New Version of Rough Set Exploration System , 2002, Rough Sets and Current Trends in Computing.

[11]  Jerzy W. Grzymala-Busse,et al.  A New Version of the Rule Induction System LERS , 1997, Fundam. Informaticae.

[12]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[13]  I. Ozkarahan,et al.  Supplier evaluation and management system for strategic sourcing based on a new multicriteria sorting procedure , 2007 .

[14]  P. Vincke,et al.  Note-A Preference Ranking Organisation Method: The PROMETHEE Method for Multiple Criteria Decision-Making , 1985 .

[15]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[16]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[17]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[18]  Marcin S. Szczuka,et al.  The Rough Set Exploration System , 2005, Trans. Rough Sets.

[19]  Akbar Esfahanipour,et al.  Decision making in stock trading: An application of PROMETHEE , 2007, Eur. J. Oper. Res..

[20]  Pan Yue,et al.  Ranking environmental projects model based on multicriteria decision-making and the weight sensitivity analysis* , 2007 .

[21]  Marcin S. Szczuka,et al.  RSES and RSESlib - A Collection of Tools for Rough Set Computations , 2000, Rough Sets and Current Trends in Computing.

[22]  Ivo Düntsch,et al.  Classificatory filtering in decision systems , 2000, Int. J. Approx. Reason..

[23]  J. Grzymala-Busse,et al.  Rough Set Approaches to Rule Induction from Incomplete Data , 2004 .

[24]  Desire L. Massart,et al.  Rough sets theory , 1999 .

[25]  Lakhmi C. Jain,et al.  Neural Network Training Using Genetic Algorithms , 1996 .

[26]  Yi-Chung Hu,et al.  A single-layer perceptron with PROMETHEE methods using novel preference indices , 2010, Neurocomputing.

[27]  Andrzej Skowron,et al.  Rough sets and Boolean reasoning , 2007, Inf. Sci..

[28]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[29]  M. Friedman A Comparison of Alternative Tests of Significance for the Problem of $m$ Rankings , 1940 .

[30]  J. Brans,et al.  Geometrical representations for MCDA , 1988 .

[31]  Luis A. García,et al.  Comparison of different multicriteria evaluation methods for the Red Bluff diversion dam , 2000, Environ. Model. Softw..

[32]  Andrzej Skowron,et al.  Hyperrelations in version space , 2004, Int. J. Approx. Reason..

[33]  Arkadiusz Wojna,et al.  On the Evolution of Rough Set Exploration System , 2004, Rough Sets and Current Trends in Computing.

[34]  R. Iman,et al.  Approximations of the critical region of the fbietkan statistic , 1980 .

[35]  Constantin Zopounidis,et al.  Multicriteria classification and sorting methods: A literature review , 2002, Eur. J. Oper. Res..

[36]  Jerzy W. Grzymala-Busse,et al.  Global discretization of continuous attributes as preprocessing for machine learning , 1996, Int. J. Approx. Reason..

[37]  Hisao Ishibuchi,et al.  Classification and modeling with linguistic information granules - advanced approaches to linguistic data mining , 2004, Advanced information processing.

[38]  Jon Erickson,et al.  Collaborative environmental planning in river management: an application of multicriteria decision analysis in the White River Watershed in Vermont. , 2007, Journal of environmental management.

[39]  Philippe Vincke,et al.  Multicriteria Decision-Aid , 1992 .

[40]  Zdzislaw Pawlak,et al.  Rough Set Theory , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[41]  Jean Pierre Brans,et al.  HOW TO SELECT AND HOW TO RANK PROJECTS: THE PROMETHEE METHOD , 1986 .

[42]  Patrice Perny,et al.  Multicriteria filtering methods based onconcordance and non-discordance principles , 1998, Ann. Oper. Res..

[43]  J. Grzymala-Busse,et al.  Three discretization methods for rule induction , 2001 .

[44]  Bertrand Mareschal,et al.  Prométhée: a new family of outranking methods in multicriteria analysis , 1984 .