Tractor beam in micro-scale

Following the Keplerian idea of radiative forces one would intuitively expect that an object illuminated by sunlight radiation or a laser beam is accelerated along the direction of the photon flow. Such radiation pressure forms the basis for the concept of solar sail, or laser acceleration of micro-particles. In contrast, a hypothetical optical field known from the realm of science-fiction as the "tractor" beam attracts the matter from large distances against the beam propagation. We present a geometry of such"tractor" beam in micro-scale and experimentally demonstrate how it acts upon spherical micro-particles of various sizes or optically self-arranged structures of micro-particles.

[1]  Cheng-Wei Qiu,et al.  Single gradientless light beam drags particles as tractor beams. , 2011, Physical review letters.

[2]  Aristide Dogariu,et al.  Optically induced 'negative forces' , 2012, Nature Photonics.

[3]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[4]  Oto Brzobohatý,et al.  Experimental demonstration of optical transport, sorting and self-arrangement using a /`tractor beam/' , 2013 .

[5]  P. Zemánek,et al.  Speed enhancement of multi-particle chain in a traveling standing wave , 2012 .

[6]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[7]  Gérard Gréhan,et al.  Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review , 2011 .

[8]  Tomáš Čižmár,et al.  Shaping the future of manipulation , 2011 .

[9]  P. Zemánek,et al.  Long-range one-dimensional longitudinal optical binding. , 2008, Physical review letters.

[10]  Steven M Block,et al.  Optical tweezers study life under tension. , 2011, Nature photonics.

[11]  Pavel Zemánek,et al.  Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  J. Golovchenko,et al.  Optical Matter: Crystallization and Binding in Intense Optical Fields , 1990, Science.

[13]  Oto Brzobohatý,et al.  Dynamic size tuning of multidimensional optically bound matter , 2011 .

[14]  David G Grier,et al.  Optical solenoid beams. , 2010, Optics express.

[15]  A Dogariu,et al.  Negative nonconservative forces: optical "tractor beams" for arbitrary objects. , 2011, Physical review letters.

[16]  Juan José Sáenz,et al.  Optical forces: Laser tractor beams , 2011 .

[17]  Tomáš Čižmár,et al.  Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination , 2008 .

[18]  O. Brzobohatý,et al.  Static and dynamic behavior of two optically bound microparticles in a standing wave. , 2011, Optics express.

[19]  T Čižmár,et al.  Experimental and theoretical determination of optical binding forces. , 2010, Optics express.

[20]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[21]  Oto Brzobohatý,et al.  The holographic optical micro-manipulation system based on counter-propagating beams , 2010 .

[22]  A Dogariu,et al.  On the concept of "tractor beams". , 2010, Optics letters.

[23]  Jun Chen,et al.  Optical pulling force , 2011 .

[24]  Oto Brzobohatý,et al.  Optical manipulation of aerosol droplets using a holographic dual and single beam trap. , 2013, Optics letters.

[25]  Pavel Zemánek,et al.  Colloquium: Gripped by light: Optical binding , 2010 .

[26]  Tomáš Čižmár,et al.  Sub-micron particle organization by self-imaging of non-diffracting beams , 2006 .

[27]  David G Grier,et al.  Optical forces and torques in nonuniform beams of light. , 2011, Physical review letters.

[28]  J. P. Barton,et al.  Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam , 1989 .