Chromosomal rearrangements in enteric bacteria (minireview)

Early genetic studies showed conservation of gene order in the enteric bacteria. Two recent methods using pulsed field gel electrophoresis (PFGE) to determine the physical map of the genome are: (i) partial digestion with the endonuclease I‐CeuI, which digests the DNA of bacteria in the rrn operon for rRNA (ribosomal RNA), thus establishing the “rrn genomic skeleton” (the size in kbp of the intervals between rRNA operons); (ii) analysis of XbaI and B1nI sites within Tn10 insertions in the chromosome. The order of I‐CeuI fragments, which is ABCDEFG in S. typhimurium LT2 and E. coli K‐12, was found to be conserved in most Salmonella species, most of which grow in many hosts (host‐generalists). However, in S. typhi, S. paratyphi C, S. gallinarum, and S. pullorum, species which are host‐specialized, these fragments are rearranged, due to homologous recombination between the rrn operons, resulting in translocations and inversions. Inversions and translocations not involving the rrn operons are seldom detected except for inversions over the TER (termination of replication) region. Additive genetic changes (due to lateral transfer resulting in insertion of nonhomologous DNA) have resulted in “loops” containing blocks of DNA which provide new genes to specific strains, thus driving rapid evolution of new traits.

[1]  K. Wong,et al.  A BlnI restriction map of the Salmonella typhimurium LT2 genome , 1992, Journal of bacteriology.

[2]  J R Roth,et al.  Gene duplication in bacteria: alteration of gene dosage by sister-chromosome exchanges. , 1979, Cold Spring Harbor symposia on quantitative biology.

[3]  Catherine A. Lee,et al.  A 40 kb chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the Escherichia coli K‐12 chromosome , 1995, Molecular microbiology.

[4]  C. Cantor,et al.  A physical map of the Escherichia coli K12 genome. , 1987, Science.

[5]  J. BachmannB 大腸菌K‐12のリンケージマップ,8版 , 1990 .

[6]  K. Sanderson,et al.  Highly plastic chromosomal organization in Salmonella typhi. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[7]  K. Sanderson,et al.  The XbaI‐BlnI‐CeuI genomic cleavage map of Salmonella enteritidis shows an inversion relative to Salmonella typhimurium LT2 , 1993, Molecular microbiology.

[8]  H. Ochman,et al.  Identification of a pathogenicity island required for Salmonella survival in host cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[9]  K. Sanderson,et al.  Rearrangements in the genome of the bacterium Salmonella typhi. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[10]  K. Sanderson Genetic relatedness in the family Enterobacteriaceae. , 1976, Annual review of microbiology.

[11]  K. Sanderson,et al.  Genomic mapping with I-Ceu I, an intron-encoded endonuclease specific for genes for ribosomal RNA, in Salmonella spp., Escherichia coli, and other bacteria. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[12]  C W Hill,et al.  Inversions between ribosomal RNA genes of Escherichia coli. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[13]  C. Lemieux,et al.  The I-CeuI endonuclease: purification and potential role in the evolution of Chlamydomonas group I introns. , 1994, European journal of biochemistry.

[14]  Howard Ochman,et al.  Pathogenicity Islands: Bacterial Evolution in Quantum Leaps , 1996, Cell.

[15]  K. Sanderson,et al.  The chromosome of Salmonella paratyphi A is inverted by recombination between rrnH and rrnG , 1995, Journal of bacteriology.

[16]  J. Gray,et al.  Effects of chromosomal inversion on cell fitness in Escherichia coli K-12. , 1988, Genetics.

[17]  K. Sanderson,et al.  Genomic cleavage map of Salmonella typhi Ty2 , 1995, Journal of bacteriology.

[18]  K. Sanderson,et al.  A physical map of the Salmonella typhimurium LT2 genome made by using XbaI analysis , 1992, Journal of bacteriology.

[19]  J. Shea,et al.  Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[20]  K. Sanderson,et al.  The XbaI-BlnI-CeuI genomic cleavage map of Salmonella paratyphi B , 1994, Journal of bacteriology.

[21]  F. Cornet,et al.  Restriction of the activity of the recombination site dif to a small zone of the Escherichia coli chromosome. , 1996, Genes & development.

[22]  F. Cornet,et al.  Hyperrecombination in the terminus region of the Escherichia coli chromosome: possible relation to nucleoid organization , 1994, Journal of bacteriology.

[23]  B. Sobral,et al.  Physical map of the genome of Rhizobium meliloti 1021 , 1993, Journal of bacteriology.

[24]  C. Lemieux,et al.  Cleavage pattern of the homing endonuclease encoded by the fifth intron in the chloroplast large subunit rRNA-encoding gene of Chlamydomonas eugametos. , 1991, Gene.

[25]  M. Riley,et al.  The Bacterial Chromosome , 1990 .

[26]  F. Neidhardt,et al.  Escherichia Coli and Salmonella: Typhimurium Cellular and Molecular Biology , 1987 .

[27]  K. Sanderson,et al.  I-CeuI reveals conservation of the genome of independent strains of Salmonella typhimurium , 1995, Journal of bacteriology.

[28]  M. Fonstein,et al.  Physical mapping of bacterial genomes , 1995, Journal of bacteriology.

[29]  K. Sanderson,et al.  The XbaI-BlnI-CeuI genomic cleavage map of Salmonella typhimurium LT2 determined by double digestion, end labelling, and pulsed-field gel electrophoresis , 1993, Journal of bacteriology.

[30]  A. Kolstø,et al.  Dynamic bacterial genome organization , 1997, Molecular microbiology.