Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem
暂无分享,去创建一个
Salvatore Greco | Salvatore Corrente | Silvia Angilella | S. Greco | Salvatore Corrente | S. Angilella
[1] Luis C. Dias,et al. Resolving inconsistencies among constraints on the parameters of an MCDA model , 2003, Eur. J. Oper. Res..
[2] J. Figueira,et al. A survey on stochastic multicriteria acceptability analysis methods , 2008 .
[3] Salvatore Greco,et al. Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral , 2010, Eur. J. Oper. Res..
[4] Salvatore Greco,et al. Robust Ordinal Regression , 2014, Trends in Multiple Criteria Decision Analysis.
[5] Christophe Labreuche,et al. Bi-capacities - II: the Choquet integral , 2005, Fuzzy Sets Syst..
[6] Risto Lahdelma,et al. SMAA - Stochastic multiobjective acceptability analysis , 1998, Eur. J. Oper. Res..
[7] Bertrand Mareschal,et al. Prométhée: a new family of outranking methods in multicriteria analysis , 1984 .
[8] Christophe Labreuche,et al. Bi-capacities - I: definition, Möbius transform and interaction , 2005, Fuzzy Sets Syst..
[9] Tommi Tervonen,et al. Implementing stochastic multicriteria acceptability analysis , 2007, Eur. J. Oper. Res..
[10] Robert L. Smith,et al. Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions , 1984, Oper. Res..
[11] José Rui Figueira,et al. ELECTRE methods with interaction between criteria: An extension of the concordance index , 2009, Eur. J. Oper. Res..
[12] G. Choquet. Theory of capacities , 1954 .
[13] P. Wakker. Additive Representations of Preferences: A New Foundation of Decision Analysis , 1988 .
[14] Milosz Kadzinski,et al. Stochastic ordinal regression for multiple criteria sorting problems , 2013, Decis. Support Syst..
[15] Michel Grabisch,et al. A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package , 2008, Eur. J. Oper. Res..
[16] J. Siskos. Assessing a set of additive utility functions for multicriteria decision-making , 1982 .
[17] Michel Grabisch,et al. K-order Additive Discrete Fuzzy Measures and Their Representation , 1997, Fuzzy Sets Syst..
[18] Tommi Tervonen,et al. Hit-And-Run enables efficient weight generation for simulation-based multiple criteria decision analysis , 2013, Eur. J. Oper. Res..
[19] L. S. Shapley,et al. 17. A Value for n-Person Games , 1953 .
[20] 菅野 道夫,et al. Theory of fuzzy integrals and its applications , 1975 .
[21] Salvatore Greco,et al. Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..
[22] Itzhak Gilboa,et al. Additive representations of non-additive measures and the choquet integral , 1994, Ann. Oper. Res..
[23] Salvatore Greco,et al. The Choquet integral with respect to a level dependent capacity , 2011, Fuzzy Sets Syst..
[24] Salvatore Greco,et al. Rough sets theory for multicriteria decision analysis , 2001, Eur. J. Oper. Res..
[25] Jean Pierre Brans,et al. A PREFERENCE RANKING ORGANIZATION METHOD , 1985 .
[26] P. Vincke,et al. Note-A Preference Ranking Organisation Method: The PROMETHEE Method for Multiple Criteria Decision-Making , 1985 .
[27] Alain Chateauneuf,et al. Some Characterizations of Lower Probabilities and Other Monotone Capacities through the use of Möbius Inversion , 1989, Classic Works of the Dempster-Shafer Theory of Belief Functions.
[28] S French,et al. Multicriteria Methodology for Decision Aiding , 1996 .
[29] Ian N. Durbach,et al. Dealing with Uncertainties in MCDA , 2016 .
[30] Salvatore Greco,et al. SMAA-Choquet: Stochastic Multicriteria Acceptability Analysis for the Choquet Integral , 2012, IPMU.
[31] Matthias Ehrgott,et al. Multiple criteria decision analysis: state of the art surveys , 2005 .
[32] Kaisa Miettinen,et al. Ordinal criteria in stochastic multicriteria acceptability analysis (SMAA) , 2003, Eur. J. Oper. Res..
[33] Salvatore Greco,et al. Robust integrals , 2012, Fuzzy Sets Syst..
[34] Vincent Mousseau,et al. A user-oriented implementation of the ELECTRE-TRI method integrating preference elicitation support , 2000, Comput. Oper. Res..
[35] Yannis Siskos,et al. Preference disaggregation: 20 years of MCDA experience , 2001, Eur. J. Oper. Res..
[36] Glenn Shafer,et al. A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.
[37] Milosz Kadzinski,et al. Robust multi-criteria ranking with additive value models and holistic pair-wise preference statements , 2013, Eur. J. Oper. Res..
[38] Salvatore Greco,et al. Rough Sets in Decision Making , 2009, Encyclopedia of Complexity and Systems Science.
[39] Salvatore Greco,et al. Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules , 2004, Eur. J. Oper. Res..
[40] José Rui Figueira,et al. Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method , 2009, Eur. J. Oper. Res..
[41] Michel Grabisch,et al. A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid , 2010, Ann. Oper. Res..
[42] Salvatore Greco,et al. Multiple Criteria Hierarchy Process in Robust Ordinal Regression , 2012, Decis. Support Syst..
[43] Salvatore Greco,et al. Multiple Criteria Hierarchy Process for the Choquet Integral , 2013, EMO.
[44] Christophe Labreuche,et al. Fuzzy Measures and Integrals in MCDA , 2004 .
[45] M. Grabisch,et al. Preference Representation by the Choquet Integral : The Commensurability Hypothesis , 2004 .
[46] G. Rota. On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .
[47] M. Grabisch. The application of fuzzy integrals in multicriteria decision making , 1996 .
[48] Salvatore Greco,et al. Bipolar fuzzy integrals , 2012, Fuzzy Sets Syst..
[49] José Rui Figueira,et al. Dealing with interaction between bipolar multiple criteria preferences in PROMETHEE methods , 2012, Ann. Oper. Res..
[50] Ralph L. Keeney,et al. Decisions with multiple objectives: preferences and value tradeoffs , 1976 .
[51] Risto Lahdelma,et al. SMAA-2: Stochastic Multicriteria Acceptability Analysis for Group Decision Making , 2001, Oper. Res..
[52] Jean-Luc Marichal,et al. Determination of weights of interacting criteria from a reference set , 2000, Eur. J. Oper. Res..
[53] Salvatore Greco,et al. Assessing non-additive utility for multicriteria decision aid , 2004, Eur. J. Oper. Res..
[54] Juscelino Almeida Dias,et al. A stochastic method for robustness analysis in sorting problems , 2009, Eur. J. Oper. Res..
[55] José Rui Figueira,et al. SMAA-III A Simulation-Based Approach for Sensitivity Analysis of ELECTRE III , 2008 .
[56] R. L. Keeney,et al. Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.