Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem

The Choquet integral preference model is adopted in Multiple Criteria Decision Aiding (MCDA) to deal with interactions between criteria, while the Stochastic Multiobjective Acceptability Analysis (SMAA) is an MCDA methodology considered to take into account uncertainty or imprecision on the considered data and preference parameters. In this paper, we propose to combine the Choquet integral preference model with the SMAA methodology in order to get robust recommendations taking into account all parameters compatible with the preference information provided by the Decision Maker (DM). In case the criteria are on a common scale, one has to elicit only a set of non-additive weights, technically a capacity, compatible with the DM’s preference information. Instead, if the criteria are on different scales, besides the capacity, one has to elicit also a common scale compatible with the preferences given by the DM. Our approach permits to explore the whole space of capacities and common scales compatible with the DM’s preference information.

[1]  Luis C. Dias,et al.  Resolving inconsistencies among constraints on the parameters of an MCDA model , 2003, Eur. J. Oper. Res..

[2]  J. Figueira,et al.  A survey on stochastic multicriteria acceptability analysis methods , 2008 .

[3]  Salvatore Greco,et al.  Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral , 2010, Eur. J. Oper. Res..

[4]  Salvatore Greco,et al.  Robust Ordinal Regression , 2014, Trends in Multiple Criteria Decision Analysis.

[5]  Christophe Labreuche,et al.  Bi-capacities - II: the Choquet integral , 2005, Fuzzy Sets Syst..

[6]  Risto Lahdelma,et al.  SMAA - Stochastic multiobjective acceptability analysis , 1998, Eur. J. Oper. Res..

[7]  Bertrand Mareschal,et al.  Prométhée: a new family of outranking methods in multicriteria analysis , 1984 .

[8]  Christophe Labreuche,et al.  Bi-capacities - I: definition, Möbius transform and interaction , 2005, Fuzzy Sets Syst..

[9]  Tommi Tervonen,et al.  Implementing stochastic multicriteria acceptability analysis , 2007, Eur. J. Oper. Res..

[10]  Robert L. Smith,et al.  Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions , 1984, Oper. Res..

[11]  José Rui Figueira,et al.  ELECTRE methods with interaction between criteria: An extension of the concordance index , 2009, Eur. J. Oper. Res..

[12]  G. Choquet Theory of capacities , 1954 .

[13]  P. Wakker Additive Representations of Preferences: A New Foundation of Decision Analysis , 1988 .

[14]  Milosz Kadzinski,et al.  Stochastic ordinal regression for multiple criteria sorting problems , 2013, Decis. Support Syst..

[15]  Michel Grabisch,et al.  A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package , 2008, Eur. J. Oper. Res..

[16]  J. Siskos Assessing a set of additive utility functions for multicriteria decision-making , 1982 .

[17]  Michel Grabisch,et al.  K-order Additive Discrete Fuzzy Measures and Their Representation , 1997, Fuzzy Sets Syst..

[18]  Tommi Tervonen,et al.  Hit-And-Run enables efficient weight generation for simulation-based multiple criteria decision analysis , 2013, Eur. J. Oper. Res..

[19]  L. S. Shapley,et al.  17. A Value for n-Person Games , 1953 .

[20]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[21]  Salvatore Greco,et al.  Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..

[22]  Itzhak Gilboa,et al.  Additive representations of non-additive measures and the choquet integral , 1994, Ann. Oper. Res..

[23]  Salvatore Greco,et al.  The Choquet integral with respect to a level dependent capacity , 2011, Fuzzy Sets Syst..

[24]  Salvatore Greco,et al.  Rough sets theory for multicriteria decision analysis , 2001, Eur. J. Oper. Res..

[25]  Jean Pierre Brans,et al.  A PREFERENCE RANKING ORGANIZATION METHOD , 1985 .

[26]  P. Vincke,et al.  Note-A Preference Ranking Organisation Method: The PROMETHEE Method for Multiple Criteria Decision-Making , 1985 .

[27]  Alain Chateauneuf,et al.  Some Characterizations of Lower Probabilities and Other Monotone Capacities through the use of Möbius Inversion , 1989, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[28]  S French,et al.  Multicriteria Methodology for Decision Aiding , 1996 .

[29]  Ian N. Durbach,et al.  Dealing with Uncertainties in MCDA , 2016 .

[30]  Salvatore Greco,et al.  SMAA-Choquet: Stochastic Multicriteria Acceptability Analysis for the Choquet Integral , 2012, IPMU.

[31]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[32]  Kaisa Miettinen,et al.  Ordinal criteria in stochastic multicriteria acceptability analysis (SMAA) , 2003, Eur. J. Oper. Res..

[33]  Salvatore Greco,et al.  Robust integrals , 2012, Fuzzy Sets Syst..

[34]  Vincent Mousseau,et al.  A user-oriented implementation of the ELECTRE-TRI method integrating preference elicitation support , 2000, Comput. Oper. Res..

[35]  Yannis Siskos,et al.  Preference disaggregation: 20 years of MCDA experience , 2001, Eur. J. Oper. Res..

[36]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[37]  Milosz Kadzinski,et al.  Robust multi-criteria ranking with additive value models and holistic pair-wise preference statements , 2013, Eur. J. Oper. Res..

[38]  Salvatore Greco,et al.  Rough Sets in Decision Making , 2009, Encyclopedia of Complexity and Systems Science.

[39]  Salvatore Greco,et al.  Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules , 2004, Eur. J. Oper. Res..

[40]  José Rui Figueira,et al.  Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method , 2009, Eur. J. Oper. Res..

[41]  Michel Grabisch,et al.  A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid , 2010, Ann. Oper. Res..

[42]  Salvatore Greco,et al.  Multiple Criteria Hierarchy Process in Robust Ordinal Regression , 2012, Decis. Support Syst..

[43]  Salvatore Greco,et al.  Multiple Criteria Hierarchy Process for the Choquet Integral , 2013, EMO.

[44]  Christophe Labreuche,et al.  Fuzzy Measures and Integrals in MCDA , 2004 .

[45]  M. Grabisch,et al.  Preference Representation by the Choquet Integral : The Commensurability Hypothesis , 2004 .

[46]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[47]  M. Grabisch The application of fuzzy integrals in multicriteria decision making , 1996 .

[48]  Salvatore Greco,et al.  Bipolar fuzzy integrals , 2012, Fuzzy Sets Syst..

[49]  José Rui Figueira,et al.  Dealing with interaction between bipolar multiple criteria preferences in PROMETHEE methods , 2012, Ann. Oper. Res..

[50]  Ralph L. Keeney,et al.  Decisions with multiple objectives: preferences and value tradeoffs , 1976 .

[51]  Risto Lahdelma,et al.  SMAA-2: Stochastic Multicriteria Acceptability Analysis for Group Decision Making , 2001, Oper. Res..

[52]  Jean-Luc Marichal,et al.  Determination of weights of interacting criteria from a reference set , 2000, Eur. J. Oper. Res..

[53]  Salvatore Greco,et al.  Assessing non-additive utility for multicriteria decision aid , 2004, Eur. J. Oper. Res..

[54]  Juscelino Almeida Dias,et al.  A stochastic method for robustness analysis in sorting problems , 2009, Eur. J. Oper. Res..

[55]  José Rui Figueira,et al.  SMAA-III A Simulation-Based Approach for Sensitivity Analysis of ELECTRE III , 2008 .

[56]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.