Brownian motion and algorithm complexity
暂无分享,去创建一个
[1] Philippe Flajolet,et al. A Branching Process Arising in Dynamic Hashing, Trie Searching and Polynomial Factorization , 1982, ICALP.
[2] Kai Lai Chung,et al. Excursions in Brownian motion , 1976 .
[3] Frank B. Knight,et al. On the excursion process of Brownian motion , 1980 .
[4] Guy Louchard,et al. KAC'S FORMULA, LEVY'S LOCAL TIME AND BROWNIAN EXCURSION , 1984 .
[5] Robert Sedgewick. Data Movement in Odd-Even Merging , 1978, SIAM J. Comput..
[6] Philippe Flajolet,et al. The analysis of simple list structures , 1986, Inf. Sci..
[7] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[8] Jean Françon,et al. Sur Le Nombre de Registres Nécessaires a L'évaluation D'une Expression Arithmétique , 1984, RAIRO Theor. Informatics Appl..
[9] Philippe Flajolet,et al. A Note on Gray Code and Odd-Even Merge , 1980, SIAM J. Comput..
[10] Robert Cori,et al. Une Preuve Combinatiore de la Rationalité d'une Série Génératrice Associée aux Arbres , 1982, RAIRO - Theoretical Informatics and Applications.
[11] Philippe Flajolet,et al. Analyse d'algorithmes de manipulation d'arbres et de fichiers , 1981 .
[12] P. Billingsley,et al. Convergence of Probability Measures , 1969 .
[13] L. Shepp,et al. On the integral of the absolute value of the pinned Wiener process-calculation of its probability de , 1982 .
[14] M. Kac. On Deviations between Theoretical and Empirical Distributions. , 1949, Proceedings of the National Academy of Sciences of the United States of America.
[15] G. Louchard. The brownian excursion area: a numerical analysis , 1984 .
[16] Guy Louchard,et al. The Brownian Motion: A Neglected Tool for the Complexity Analysis of Sorted Tables Manipulation , 1983, RAIRO Theor. Informatics Appl..
[17] Philippe Flajolet,et al. The Average Height of Binary Trees and Other Simple Trees , 1982, J. Comput. Syst. Sci..
[18] Philippe Flajolet. Combinatorial aspects of continued fractions , 1980, Discret. Math..
[19] Helmut Prodinger,et al. Register Allocation for Unary-Binary Trees , 1986, SIAM J. Comput..
[20] A. Rényi,et al. On the height of trees , 1967, Journal of the Australian Mathematical Society.
[21] W. D. Kaigh. An Invariance Principle for Random Walk Conditioned by a Late Return to Zero , 1976 .
[22] Robert Sedgewick. Mathematical analysis of combinatorial algorithms , 1983 .