Speed skills: measuring the visual speed analyzing properties of primate MT neurons

Knowing the direction and speed of moving objects is often critical for survival. However, it is poorly understood how cortical neurons process the speed of image movement. Here we tested MT neurons using moving sine-wave gratings of different spatial and temporal frequencies, and mapped out the neurons' spatiotemporal frequency response profiles. The maps typically had oriented ridges of peak sensitivity as expected for speed-tuned neurons. The preferred speed estimate, derived from the orientation of the maps, corresponded well to the preferred speed when moving bars were presented. Thus, our data demonstrate that MT neurons are truly sensitive to the object speed. These findings indicate that MT is not only a key structure in the analysis of direction of motion and depth perception, but also in the analysis of object speed.

[1]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[2]  W. Newsome,et al.  Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  M. Morrone,et al.  Motion analysis by feature tracking , 1998, Vision Research.

[4]  J A Perrone,et al.  Emulating the Visual Receptive-Field Properties of MST Neurons with a Template Model of Heading Estimation , 1998, The Journal of Neuroscience.

[5]  S. Zeki,et al.  Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. , 1971, Brain research.

[6]  Maninder K. Kahlon,et al.  Visual Motion Analysis for Pursuit Eye Movements in Area MT of Macaque Monkeys , 1999, The Journal of Neuroscience.

[7]  K. H. Britten,et al.  Responses of neurons in macaque MT to stochastic motion signals , 1993, Visual Neuroscience.

[8]  D. Pollen,et al.  Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. , 1985, The Journal of physiology.

[9]  T D Albright,et al.  What happens if it changes color when it moves?: the nature of chromatic input to macaque visual area MT , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  Ronald N. Bracewell,et al.  The Fourier Transform and Its Applications , 1966 .

[11]  K. Tanaka,et al.  Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. , 1989, Journal of neurophysiology.

[12]  T D Albright,et al.  The Contribution of Color to Motion Processing in Macaque Middle Temporal Area , 1999, The Journal of Neuroscience.

[13]  T. Poggio,et al.  Visual hyperacuity: spatiotemporal interpolation in human vision , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[14]  R. Hetherington The Perception of the Visual World , 1952 .

[15]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[16]  H. C. Longuet-Higgins,et al.  The interpretation of a moving retinal image , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[17]  J A Perrone,et al.  Model for the computation of self-motion in biological systems. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[18]  J. Movshon The velocity tuning of single units in cat striate cortex. , 1975, The Journal of physiology.

[19]  Richard F. Gunst,et al.  Applied Regression Analysis , 1999, Technometrics.

[20]  Andrea J. van Doorn,et al.  Invariant Properties of the Motion Parallax Field due to the Movement of Rigid Bodies Relative to an Observer , 1975 .

[21]  D. J. Felleman,et al.  Receptive-field properties of neurons in middle temporal visual area (MT) of owl monkeys. , 1984, Journal of neurophysiology.

[22]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[23]  Khanh Nguyen,et al.  Use of a raster framebuffer in vision research , 1986 .

[24]  E. Adelson,et al.  Phenomenal coherence of moving visual patterns , 1982, Nature.

[25]  Thomas D. Albright,et al.  Neural correlates of perceptual motion coherence , 1992, Nature.

[26]  G. Orban,et al.  Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: influence of eccentricity. , 1986, Journal of neurophysiology.

[27]  K. H. Britten,et al.  Neuronal correlates of a perceptual decision , 1989, Nature.

[28]  N. Draper,et al.  Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .

[29]  H. Rodman,et al.  Coding of visual stimulus velocity in area MT of the macaque , 1987, Vision Research.

[30]  J. Perrone,et al.  A model of self-motion estimation within primate extrastriate visual cortex , 1994, Vision Research.

[31]  G. Orban,et al.  Speed and direction selectivity of macaque middle temporal neurons. , 1993, Journal of neurophysiology.

[32]  A Thiele,et al.  Decision‐related activity in the macaque dorsal visual pathway , 1999, The European journal of neuroscience.

[33]  Stefan Treue,et al.  Seeing multiple directions of motion—physiology and psychophysics , 2000, Nature Neuroscience.

[34]  Andrew B. Watson,et al.  Window of visibility: a psychophysical theory of fidelity in time-sampled visual motion displays , 1986 .