Evolutionary Stochastic Games

We extend the notion of Evolutionarily Stable Strategies introduced by Maynard Smith and Price (Nature 246:15–18, 1973) for models ruled by a single fitness matrix A, to the framework of stochastic games developed by Lloyd Shapley (Proc. Natl. Acad. Sci. USA 39:1095–1100, 1953) where, at discrete stages in time, players play one of finitely many matrix games, while the transitions from one matrix game to the next follow a jointly controlled Markov chain. We show that this extension from a single-state model to a multistate model can be done on the assumption of having an irreducible transition law. In a similar way, we extend the notion of Replicator Dynamics introduced by Taylor and Jonker (Math. Biosci. 40:145–156, 1978) to the multistate model. These extensions facilitate the analysis of evolutionary interactions that are richer than the ones that can be handled by the original, single-state, evolutionary game model. Several examples are provided.

[1]  Masayuki Takahashi Equilibrium points of stochastic non-cooperative $n$-person games , 1964 .

[3]  Nicolas Vieille,et al.  Two-player stochastic games II: The case of recursive games , 2000 .

[4]  Herbert Basler Grundbegriffe der Wahrscheinlichkeitsrechnung und ihre Anwendungen , 1984 .

[5]  A. Kolmogoroff Grundbegriffe der Wahrscheinlichkeitsrechnung , 1933 .

[6]  Frank Thuijsman Non-zerosum stochastic games , 1987 .

[7]  J. M. Smith,et al.  The Logic of Animal Conflict , 1973, Nature.

[8]  N. Vieille Two-player stochastic games I: A reduction , 2000 .

[9]  S. Kakutani A generalization of Brouwer’s fixed point theorem , 1941 .

[10]  J. yon Neumann A GENERALIZATION OF BROUWERS FIXED POINT THEOREM BY SHIZUO IAKUTANI , .

[11]  P. Taylor,et al.  Evolutionarily Stable Strategies and Game Dynamics , 1978 .

[12]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[13]  L. Shapley,et al.  Stochastic Games* , 1953, Proceedings of the National Academy of Sciences.

[14]  Aviad Heifetz,et al.  Optimal marauding in bowerbirds , 2012 .

[15]  Eitan Altman,et al.  Markov decision evolutionary games with expected average fitness , 2009 .

[16]  Eitan Altman,et al.  Markov decision evolutionary games with time average expected fitness criterion , 2008, VALUETOOLS.

[17]  M. J. Sobel Noncooperative Stochastic Games , 1971 .

[18]  J. Neumann Zur Theorie der Gesellschaftsspiele , 1928 .

[19]  William H. Sandholm,et al.  Population Games And Evolutionary Dynamics , 2010, Economic learning and social evolution.

[20]  J. Nash,et al.  NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.

[21]  Eric van Damme,et al.  Non-Cooperative Games , 2000 .

[22]  A. M. Fink,et al.  Equilibrium in a stochastic $n$-person game , 1964 .

[23]  Frank Thuijsman,et al.  Optimality and equilibria in stochastic games , 1992 .