A numerical technique to simulate display pixels based on electrowetting

Abstract We present a numerical simulation technique to calculate the deformation of interfaces between a conductive and non-conductive fluid as well as the motion of liquid–liquid–solid three-phase contact lines under the influence of externally applied electric fields in electrowetting configuration. The technique is based on the volume of fluid method as implemented in the OpenFOAM framework, using a phase fraction parameter to track the different phases. We solve the combined electrohydrodynamic problem by coupling the equations for electric effects—Gauss’s law and a charge transport equation—to the Navier–Stokes equations of fluid flow. Specifically, we use a multi-domain approach to solving for the electric field in the solid and liquid dielectric parts of the system. A Cox–Voinov boundary condition is introduced to describe the dynamic contact angle of moving contact lines. We present several benchmark problems with analytical solutions to validate the simulation model. Subsequently, the model is used to study the dynamics of an electrowetting-based display pixel. We demonstrate good qualitative agreement between simulation results of the opening and closing of a pixel with experimental tests of the identical reference geometry.

[1]  Frieder Mugele,et al.  Electrowetting-induced oil film entrapment and instability. , 2006, Physical review letters.

[2]  Teodor Veres,et al.  Numerical modeling of electrowetting processes in digital microfluidic devices , 2010 .

[3]  Ali Dolatabadi,et al.  A coupled electro-hydrodynamic numerical modeling of droplet actuation by electrowetting , 2008 .

[4]  D. Ende,et al.  Electrical switching of wetting states on superhydrophobic surfaces: a route towards reversible Cassie-to-Wenzel transitions. , 2011, Physical review letters.

[5]  Stephan Herminghaus,et al.  Interface profiles near three-phase contact lines in electric fields. , 2003, Physical review letters.

[6]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[7]  B. Berge,et al.  Variable focal lens controlled by an external voltage: An application of electrowetting , 2000 .

[8]  Dieter Bothe,et al.  On Adaptive Mesh Refinement for a 3D Geometrical Volume of Fluid Transport Algorithm on Unstructured Meshes using OpenFOAM , 2013 .

[9]  Markus Bussmann,et al.  Height functions for applying contact angles to 3D VOF simulations , 2009 .

[10]  A. Dolatabadi,et al.  Effects of dynamic contact angle on numerical modeling of electrowetting in parallel plate microchannels , 2009 .

[11]  D. Ende,et al.  An Open FOAM-based electro-hydrodynamical model , 2013 .

[12]  Wei-Yuan Cheng,et al.  Single‐layered multi‐color electrowetting display by using ink‐jet‐printing technology and fluid‐motion prediction with simulation , 2011 .

[13]  M. Mohammadpourfard,et al.  Lattice Boltzmann method for electrowetting modeling and simulation , 2009 .

[14]  Kamran Mohseni,et al.  Behaviour of a Moving Droplet under Electrowetting Actuation: Numerical Simulation , 2008 .

[15]  Erik Bjørklund,et al.  The level-set method applied to droplet dynamics in the presence of an electric field , 2009 .

[16]  M. Trujillo,et al.  Evaluating the performance of the two-phase flow solver interFoam , 2012 .

[17]  F. Mugele,et al.  High speed adaptive liquid microlens array. , 2012, Optics express.

[18]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[19]  Stéphane Popinet,et al.  An accurate adaptive solver for surface-tension-driven interfacial flows , 2009, J. Comput. Phys..

[20]  J. Baret,et al.  Electrowetting: from basics to applications , 2005 .

[21]  G. Taylor Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[22]  P. Colella,et al.  An Adaptive Level Set Approach for Incompressible Two-Phase Flows , 1997 .

[23]  D. Bonn,et al.  Wetting and Spreading , 2009 .

[24]  Jam Hans Kuipers,et al.  A critical comparison of surface tension models for the volume of fluid method , 2014 .

[25]  T. Jones,et al.  Dielectrophoretic liquid actuation and nanodroplet formation , 2001 .

[26]  Gaurav Tomar,et al.  Two-phase electrohydrodynamic simulations using a volume-of-fluid approach , 2007, J. Comput. Phys..

[27]  R. G. Cox The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow , 1986, Journal of Fluid Mechanics.

[28]  T. Krupenkin,et al.  Reverse electrowetting as a new approach to high-power energy harvesting , 2011, Nature communications.

[29]  B. Andreotti,et al.  Moving Contact Lines: Scales, Regimes, and Dynamical Transitions , 2013 .

[30]  Richard B. Fair,et al.  Digital microfluidics: is a true lab-on-a-chip possible? , 2007 .

[31]  B. J. Feenstra,et al.  Video-speed electronic paper based on electrowetting , 2003, Nature.

[32]  D. van den Ende,et al.  Electrowetting driven optical switch and tunable aperture. , 2011, Optics express.

[33]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[34]  D. Saville ELECTROHYDRODYNAMICS:The Taylor-Melcher Leaky Dielectric Model , 1997 .

[35]  Jam Hans Kuipers,et al.  DNS of gas bubbles behaviour using an improved 3D front tracking model—Model development , 2010 .

[36]  A. I. Drygiannakis,et al.  On the connection between dielectric breakdown strength, trapping of charge, and contact angle saturation in electrowetting. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[37]  R. I. Issa,et al.  A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes , 1999 .

[38]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[39]  D. Legendre,et al.  Shaken not stirred —On internal flow patterns in oscillating sessile drops , 2012 .

[40]  S. Pooyan,et al.  On a Numerical Model for Free Surface Flows of a Conductive Liquid Under an Electrostatic Field , 2012 .

[41]  O. Voinov Hydrodynamics of wetting , 1976 .

[42]  Kwan Hyoung Kang,et al.  A numerical investigation on AC electrowetting of a droplet , 2008 .

[43]  Jason Heikenfeld,et al.  Observation and optical implications of oil dewetting patterns in electrowetting displays , 2008 .

[44]  R. G. Cox The dynamics of the spreading of liquids on a solid surface. Part 2. Surfactants , 1986, Journal of Fluid Mechanics.

[45]  Stéphane Popinet,et al.  A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid , 2011, J. Comput. Phys..

[46]  L. Limat,et al.  Shape and motion of drops sliding down an inclined plane , 2005, Journal of Fluid Mechanics.

[47]  M. Mohammadpourfard,et al.  Droplets Merging and Stabilization by Electrowetting: Lattice Boltzmann Study , 2012 .

[48]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[49]  S. Kuiper,et al.  Variable-focus liquid lens for miniature cameras , 2004 .

[50]  Teodor Veres,et al.  Numerical modeling of electrowetting transport processes for digital microfluidics , 2010 .

[51]  Chris R. Kleijn,et al.  Benchmark numerical simulations of segmented two-phase flows in microchannels using the Volume of Fluid method , 2013 .

[52]  Ann S. Almgren,et al.  An adaptive level set approach for incompressible two-phase flows , 1997 .

[53]  Friedrich Gunther Mugele,et al.  Equilibrium drop surface profiles in electric fields , 2007 .