Structural and electrical studies of template synthesized copper nanowires

[1]  Yoon-Cheol Ha,et al.  A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films. , 2014, Chemical communications.

[2]  Caroline Celle,et al.  Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrodes with and without PEDOT:PSS , 2014, Nano Research.

[3]  Quanfang Chen,et al.  Fabrication and characterization of crystalline copper nanowires by electrochemical deposition inside anodic alumina template , 2013 .

[4]  W. Lu,et al.  OPAA template-directed synthesis and optical properties of metal nanocrystals , 2013, Nanoscale Research Letters.

[5]  M. Toimil-Molares Characterization and properties of micro- and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology , 2012, Beilstein journal of nanotechnology.

[6]  J. Lou,et al.  Size-dependent fracture mode transition in copper nanowires. , 2012, Small.

[7]  Peidong Yang,et al.  Surfactant-free, large-scale, solution-liquid-solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction. , 2011, Journal of the American Chemical Society.

[8]  Eduardo A Coronado,et al.  Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale. , 2011, Nanoscale.

[9]  M. Toimil-Molares,et al.  Efficient terahertz emission from InAs nanowires , 2011, 1109.0355.

[10]  G. Ho,et al.  Formation of hybrid structures: copper oxide nanocrystals templated on ultralong copper nanowires for open network sensing at room temperature , 2011, Nanotechnology.

[11]  K. Barmak,et al.  Impact Of Surface And Grain Boundary Scattering On The Resistivity Of Nanometric Cu Interconnects , 2010 .

[12]  M. Hou,et al.  Controlled crystallinity and crystallographic orientation of Cu nanowires fabricated in ion-track templates , 2010, Nanotechnology.

[13]  Robert E. Peale,et al.  Surface and grain-boundary scattering in nanometric Cu films , 2010 .

[14]  Peidong Yang,et al.  Semiconductor nanowires for energy conversion , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[15]  V. G. Celante,et al.  Electrodeposition of copper from spent Li-ion batteries by electrochemical quartz crystal microbalance and impedance spectroscopy techniques , 2010 .

[16]  H. Thomas Hahn,et al.  Intense pulsed light sintering of copper nanoink for printed electronics , 2009 .

[17]  S. Chakarvarti Track-etch membranes enabled nano-/microtechnology: A review , 2009 .

[18]  T. Ohba,et al.  Direct detection of grain boundary scattering in damascene Cu wires by nanoscale four-point probe resistance measurements , 2009 .

[19]  Jie Liu,et al.  Surface Plasmon Resonances of Cu Nanowire Arrays , 2009 .

[20]  C. M. Lilley,et al.  Surface and size effects on the electrical properties of Cu nanowires , 2008 .

[21]  C. Trautmann,et al.  Preferred growth orientation of metallic fcc nanowires under direct and alternating electrodeposition conditions , 2007, Nanotechnology.

[22]  H. Zeng,et al.  Large-scale synthesis of high-quality ultralong copper nanowires. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[23]  Sung-Ho Park,et al.  Seedless growth of free-standing copper nanowires by chemical vapor deposition. , 2004, Journal of the American Chemical Society.

[24]  C. Trautmann,et al.  Electrical characterization of electrochemically grown single copper nanowires , 2003 .

[25]  Y. Pang,et al.  Copper nanowire arrays for infrared polarizer , 2003 .

[26]  T. Gao,et al.  Electrochemical synthesis of copper nanowires , 2002 .

[27]  E. H. Sondheimer,et al.  The mean free path of electrons in metals , 2001 .

[28]  Andrzej Huczko,et al.  Template-based synthesis of nanomaterials , 2000 .

[29]  W. Hinsberg,et al.  Lithographic Imaging Techniques for the Formation of Nanoscopic Features. , 1999, Chemical reviews.

[30]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[31]  George E. Possin,et al.  A method for forming very small diameter wires (Notes) , 1970 .

[32]  M. Shatzkes,et al.  Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces , 1970 .

[33]  B. Cullity,et al.  Elements of X-ray diffraction , 1957 .

[34]  Klaus Fuchs,et al.  The conductivity of thin metallic films according to the electron theory of metals , 1938, Mathematical Proceedings of the Cambridge Philosophical Society.

[35]  William Crane Jun. XXIV. Observations on the doctrines of definite proportions in chemical affinity , 1814 .

[36]  D. Dobrev,et al.  Single‐Crystalline Copper Nanowires Produced by Electrochemical Deposition in Polymeric Ion Track Membranes , 2001 .

[37]  G. K. Williamson,et al.  X-ray line broadening from filed aluminium and wolfram , 1953 .

[38]  G. B. Harris X. Quantitative measurement of preferred orientation in rolled uranium bars , 1952 .