Techniques for visualizing 3-dimensional manifolds

Computer graphics has long been concerned with representing and displaying surfaces in three-dimensional space. The author addresses the questions of representation and display in a higher dimensional setting, specifically, that of 3-manifolds immersed in four-dimensional space. The author describes techniques for visualizing the cross-section surfaces of a 3-manifold formed by a cutting hyperplane. The manifold is first triangulated, so that the cross-section may be computed on a per tetrahedron basis. The triangulated manifold is stored in a data structure which efficiently supports calculation of curvature. These techniques have been implemented on Personal IRIS.<<ETX>>

[1]  Erik Brisson,et al.  Representing geometric structures in d dimensions: topology and order , 1989, SCG '89.

[2]  David P. Dobkin,et al.  Primitives for the manipulation of three-dimensional subdivisions , 1987, SCG '87.

[3]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[4]  Paolo Sabella,et al.  A rendering algorithm for visualizing 3D scalar fields , 1988, SIGGRAPH.

[5]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[6]  Martin Hildebrand,et al.  A Computer Generated Census of Cusped Hyperbolic 3-Manifolds , 1989, Computers and Mathematics.

[7]  David H. Laidlaw,et al.  Topology and mechanics with computer graphics , 1986 .

[8]  Feiner,et al.  Dial: A Diagrammatic Animation Language , 1982, IEEE Computer Graphics and Applications.

[9]  J. Thorpe,et al.  Lecture Notes on Elementary Topology and Geometry. , 1967 .

[10]  Alexander A. Pasko,et al.  Geometric modeling in the analysis of trivariate functions , 1988, Comput. Graph..

[11]  David Avis,et al.  Triangulating point sets in space , 1987, Discret. Comput. Geom..

[12]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[13]  Jeffrey R. Weeks,et al.  The Shape of Space , 1986 .

[14]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[15]  J. Thorpe Elementary Topics in Differential Geometry , 1979 .

[16]  Bernard Chazelle,et al.  Convex Partitions of Polyhedra: A Lower Bound and Worst-Case Optimal Algorithm , 1984, SIAM J. Comput..

[17]  K. Ho-Le,et al.  Finite element mesh generation methods: a review and classification , 1988 .

[18]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[19]  Richard S. Gallagher,et al.  An efficient 3-D visualization technique for finite element models and other coarse volumes , 1989, SIGGRAPH.

[20]  Kurt Mehlhorn,et al.  Fast Triangulation of Simple Polygons , 1983, FCT.

[21]  G Russell,et al.  Display and perception of 3-D space-filling data. , 1987, Applied optics.

[22]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[23]  Bruce G. Baumgart A polyhedron representation for computer vision , 1975, AFIPS '75.