Interactions of form and motion in the perception of moving objects

This chapter covers a few highlights from the past 20 years of research demonstrating that there is ‘motion from form’ processing. It has long been known that the visual system can construct ‘form from motion.’ For example, appropriate dot motions on a two-dimensional computer screen can lead to a percept of, say, a rotating three-dimensional cylinder or sphere. Less appreciated has been the degree to which perceived motion follows from processes that rely upon rapid analyses of form cues. Percepts that depend on such form-motion interactions reveal that form information can be processed and integrated with motion information to determine both the perceived velocity and shape of a moving object. These integration processes must be rapid enough to occur in the brief period, probably less than a quarter of a second, between retinal activation and visual experience. Data suggest that global form analyses subserve motion processing in at least five ways (Porter et al., 2011). Here, we describe three examples in which the analysis of form significantly influences our experience of moving objects. The following examples have been chosen not only for their distinctiveness, but also to compliment other examples described in detail within other chapters of this book (Bruno & Bertamini, 2013; Herzog & Öğmen, 2013; Hock, 2013; Vezzani et al., 2013). First, we describe Transformational Apparent Motion, a phenomenon that reveals how form analyses permit the figural segmentation dedicated to solving the problem of figure-to-figure matching over time (Hsieh and Tse, 2006; Tse, 2006; Tse & Caplovitz, 2006; Tse & Logothetis, 2002). Secondly, we describe how the size and shape of an object can influence how fast it is perceived to rotate. These interactions reveal the way in which form analyses permit the definition of trackable features whose unambiguous motion signals can be generalized to ambiguously moving portions of an object to solve the aperture problem (Caplovitz et al., 2006; Caplovitz & Tse, 2007a,b). Finally, we describe a number of peculiar ways in which the motions of individual elements can interact with the perceived shape and motion of a global object constructed by the grouping of these elements. These phenomena reveal that the form analyses that underlie various types of perceptual grouping can lead to the generation of emergent motion signals belonging to the perceptually grouped object that appear to underlie the conscious experience of motion (Caplovitz & Tse, 2006, 2007b; Hsieh & Tse, 2007; Kohler et al., 2010; Kohler et al., 2009). OUP UNCORRECTED PROOF – FIRSTPROOFS, Mon Nov 03 2014, NEWGEN

[1]  Josh H. McDermott,et al.  Functional imaging of human visual recognition. , 1996, Brain research. Cognitive brain research.

[2]  J. F. Brown The visual perception of velocity , 1931 .

[3]  W. Newsome,et al.  Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1. , 1986, Journal of neurophysiology.

[4]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[5]  P. A. Kolers,et al.  Shape and color in apparent motion , 1976, Vision Research.

[6]  R. Blake,et al.  Brain Areas Active during Visual Perception of Biological Motion , 2002, Neuron.

[7]  N. Logothetis,et al.  Integration of Local Features into Global Shapes Monkey and Human fMRI Studies , 2003, Neuron.

[8]  J. Freyd,et al.  Apparent Motion of the Human Body , 1990 .

[9]  M Green,et al.  Correspondence in apparent motion: defining the heuristics , 1986 .

[10]  Stephen A. Engel,et al.  Neural Response to Perception of Volume in the Lateral Occipital Complex , 2001, Neuron.

[11]  Gideon P Caplovitz,et al.  The whole moves less than the spin of its parts , 2009, Attention, perception & psychophysics.

[12]  Dennis M Levi,et al.  Integration of local features into a global shape , 2001, Vision Research.

[13]  F. Campbell,et al.  Stopped visual motion , 1979, Nature.

[14]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[15]  Z L Lu,et al.  Three-systems theory of human visual motion perception: review and update. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  P A Kolers,et al.  Figural change in apparent motion. , 1971, Journal of experimental psychology.

[17]  A. Dale,et al.  The Representation of Illusory and Real Contours in Human Cortical Visual Areas Revealed by Functional Magnetic Resonance Imaging , 1999, The Journal of Neuroscience.

[18]  Peter Ulric Tse,et al.  The duration of 3-D form analysis in transformational apparent motion , 2002, Perception & psychophysics.

[19]  V S Ramachandran,et al.  Low Spatial Frequencies Dominate Apparent Motion , 1983, Perception.

[20]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[21]  H. Bülthoff,et al.  Perceptual Organization of Local Elements into Global Shapes in the Human Visual Cortex , 2003, Current Biology.

[22]  Marc Green,et al.  What determines correspondence strength in apparent motion? , 1986, Vision Research.

[23]  Claude L. Fennema,et al.  Velocity determination in scenes containing several moving objects , 1979 .

[24]  G. Orban,et al.  Extracting 3D from Motion: Differences in Human and Monkey Intraparietal Cortex , 2002, Science.

[25]  D. Navon,et al.  Irrelevance of figural identity for resolving ambiguities in apparent motion. , 1976, Journal of experimental psychology. Human perception and performance.

[26]  Nikos K. Logothetis,et al.  Parallel pathways in the visual system: Their role in perception at isoluminance , 1991, Neuropsychologia.

[27]  J. Zanker Is facilitation responsible for the “motion induction” effect? , 1997, Vision Research.

[28]  E. Adelson,et al.  Phenomenal coherence of moving visual patterns , 1982, Nature.

[29]  O. Hikosaka,et al.  Focal visual attention produces illusory temporal order and motion sensation , 1993, Vision Research.

[30]  C. Gilbert Horizontal integration and cortical dynamics , 1992, Neuron.

[31]  M. Dawson,et al.  The how and why of what went where in apparent motion: modeling solutions to the motion correspondence problem. , 1991, Psychological review.

[32]  DH Hubel,et al.  Psychophysical evidence for separate channels for the perception of form, color, movement, and depth , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  P. Cavanagh,et al.  Motion: the long and short of it. , 1989, Spatial vision.

[34]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[35]  D. Burr,et al.  Seeing objects in motion , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[36]  Fulvio Domini,et al.  Systematic distortions of perceived planar surface motion in active vision. , 2010, Journal of vision.

[37]  G. Sperling,et al.  The functional architecture of human visual motion perception , 1995, Vision Research.

[38]  A. Cowey,et al.  Can spatial and temporal motion integration compensate for deficits in local motion mechanisms? , 2003, Neuropsychologia.

[39]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[40]  V. Ramachandran,et al.  The perception of apparent motion. , 1986, Scientific American.

[41]  M. Shiffrar,et al.  Perceived speed of moving lines depends on orientation, length, speed and luminance , 1993, Vision Research.

[42]  Jocelyn Faubert,et al.  The influence of two spatially distinct primers and attribute priming on motion induction , 1995, Vision Research.

[43]  Shimon Ullman,et al.  Shape‐selective stereo processing in human object‐related visual areas , 2002, Human brain mapping.

[44]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[45]  M. Wertheimer Experimental studies on the seeing of motion , 1961 .

[46]  N. Kanwisher,et al.  Cortical Regions Involved in Perceiving Object Shape , 2000, The Journal of Neuroscience.

[47]  E H Adelson,et al.  Adventures with Gelatinous Ellipses—Constraints on Models of Human Motion Analysis , 2000, Perception.

[48]  Paul E. Downing,et al.  The line-motion illusion : attention or impletion? , 1997 .

[49]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[50]  K. Nakayama,et al.  Occlusion and the solution to the aperture problem for motion , 1989, Vision Research.

[51]  P. Tse,et al.  Rotating dotted ellipses: Motion perception driven by grouped figural rather than local dot motion signals , 2007, Vision Research.

[52]  E. Titchener Scientific Books: Lectures on the Elementary Psychology of Feeling and Attention , 1909 .

[53]  Takeo Watanabe,et al.  The role of parsing in high level motion processing , 1998 .

[54]  L. Stelmach,et al.  Attentional modulation of visual processes in motion perception. , 1994 .

[55]  H. Bülthoff,et al.  Representation of the perceived 3-D object shape in the human lateral occipital complex. , 2003, Cerebral cortex.

[56]  H. Wallach,et al.  Circles and derived figures in rotation. , 1956, The American journal of psychology.

[57]  W Reichardt,et al.  Autocorrelation, a principle for evaluation of sensory information by the central nervous system , 1961 .

[58]  Fulvio Domini,et al.  Stereo and motion information are not independently processed by the visual system , 2006, Vision Research.

[59]  J Faubert,et al.  Intraattribute and Interattribute Motion Induction , 1994, Perception.

[60]  Hans Wallach Über visuell wahrgenommene Bewegungsrichtung , 1935 .

[61]  Richard A. Andersen,et al.  Recovering three-dimensional structure from motion with surface reconstruction , 1991, Vision Research.

[62]  Taosheng Liu,et al.  Human MT+ mediates perceptual filling-in during apparent motion , 2004, NeuroImage.

[63]  G W Humphreys,et al.  Parallel Visual Coding in Three Dimensions , 1994, Perception.

[64]  P U Tse,et al.  Curvature discontinuities are cues for rapid shape analysis , 2001, Perception & psychophysics.

[65]  R. Andersen,et al.  Integration of motion and stereopsis in middle temporal cortical area of macaques , 1995, Nature.

[66]  W. Singer,et al.  The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery , 1998, The European journal of neuroscience.

[67]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[68]  P. Tse,et al.  Illusory rebound motion and the motion continuity heuristic , 2005, Vision Research.

[69]  D. Alais,et al.  The spatial tuning of "motion streak" mechanisms revealed by masking and adaptation. , 2011, Journal of vision.

[70]  O. Hikosaka,et al.  Visual attention revealed by an illusion of motion , 1993, Neuroscience Research.

[71]  Walter Krolik Über Erfahrungswirkungen beim Bewegungssehen , 1935 .

[72]  James Copland,et al.  PROCEEDINGS OF THE ROYAL SOCIETY. , 2022 .

[73]  R. L. Knoll,et al.  The Perception of Temporal Order: Fundamental Issues and a General Model , 1973 .

[74]  Michael H. Herzog,et al.  Apparent motion and reference frames , 2015 .

[75]  Christopher C. Pack,et al.  Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain , 2001, Nature.

[76]  V. S. RAMACHANDRAN,et al.  Does colour provide an input to human motion perception? , 1978, Nature.

[77]  Po-Jang Hsieh,et al.  fMRI reveals that non‐local processing in ventral retinotopic cortex underlies perceptual grouping by temporal synchrony , 2008, Human brain mapping.

[78]  S. Ullman,et al.  The interpretation of visual motion , 1977 .

[79]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[80]  Peter De Weerd,et al.  Mechanisms of Surface Completion: Perceptual Filling-In of Texture , 2003 .

[81]  F. Campbell,et al.  The influence of spatial frequency and contrast on the perception of moving patterns , 1981, Vision Research.

[82]  Aijaz A. Baloch,et al.  A neural model of high-level motion processing: Line motion and formotion dynamics , 1997, Vision Research.

[83]  Peter U. Tse,et al.  V3A processes contour curvature as a trackable feature for the perception of rotational motion , 2010 .

[84]  Margaret S Livingstone,et al.  End-Stopping and the Aperture Problem Two-Dimensional Motion Signals in Macaque V1 , 2003, Neuron.

[85]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[86]  P. Tse,et al.  Motion fading is driven by perceived, not actual angular velocity , 2010, Vision Research.

[87]  O. Braddick,et al.  Brain Areas Sensitive to Coherent Visual Motion , 2001, Perception.

[88]  J. van Santen,et al.  Temporal covariance model of human motion perception. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[89]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[90]  E. Titchener The Psychology of Feeling and Attention , 2022 .

[91]  T. Sejnowski,et al.  A selection model for motion processing in area MT of primates , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[92]  B. Bergum,et al.  Attention and performance IX , 1982 .

[93]  T. Wiesel,et al.  Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[94]  P U Tse,et al.  Grouping inhibits motion fading by giving rise to virtual trackable features. , 2007, Journal of experimental psychology. Human perception and performance.

[95]  G. Sperling,et al.  Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[96]  A. Norcia,et al.  Neural Correlates of Transformational Apparent Motion , 2008, Perception.

[97]  Bruno A Olshausen,et al.  Processing shape, motion and three-dimensional shape-from-motion in the human cortex. , 2003, Cerebral cortex.

[98]  Marc Green,et al.  Color correspondence in apparent motion , 1989, Perception & psychophysics.

[99]  E. Reed The Ecological Approach to Visual Perception , 1989 .

[100]  Fulvio Domini,et al.  Perceived Surface Slant Is Systematically Biased in the Actively-Generated Optic Flow , 2012, PloS one.

[101]  D. Fitzpatrick Seeing beyond the receptive field in primary visual cortex , 2000, Current Opinion in Neurobiology.

[102]  Peter U. Tse,et al.  Neural correlates of transformational apparent motion , 2006, NeuroImage.

[103]  Z Kourtzi,et al.  Representation of Perceived Object Shape by the Human Lateral Occipital Complex , 2001, Science.

[104]  Peter Kramer,et al.  Stereokinetic effect, kinetic depth effect, and structure from motion , 2015 .

[105]  Mary M. Conte,et al.  Motion mechanisms have only limited access to form information , 1990, Vision Research.

[106]  Georgios A. Keliris,et al.  A binocular rivalry study of motion perception in the human brain , 2005, Vision Research.

[107]  T. Hendler,et al.  Contrast sensitivity in human visual areas and its relationship to object recognition. , 2002, Journal of neurophysiology.

[108]  R. Turner,et al.  Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain , 2000, Current Biology.

[109]  Taosheng Liu,et al.  Explicit and implicit memory for rotating objects. , 2003, Journal of experimental psychology. Learning, memory, and cognition.

[110]  Stuart Anstis Levels of Motion Perception , 2003 .

[111]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[112]  M. Kaiser Angular velocity discrimination , 1990, Perception & psychophysics.

[113]  K. Nakayama,et al.  The aperture problem—II. Spatial integration of velocity information along contours , 1988, Vision Research.

[114]  W Singer,et al.  The Perceptual Grouping Criterion of Colinearity is Reflected by Anisotropies of Connections in the Primary Visual Cortex , 1997, The European journal of neuroscience.

[115]  G. Johansson Visual perception of biological motion and a model for its analysis , 1973 .

[116]  F. Domini,et al.  Integration of disparity and velocity information for haptic and perceptual judgments of object depth. , 2011, Acta psychologica.

[117]  Jean Bennett,et al.  Lateral Connectivity and Contextual Interactions in Macaque Primary Visual Cortex , 2002, Neuron.

[118]  T. Wiesel,et al.  Clustered intrinsic connections in cat visual cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[119]  Mark M Schira,et al.  Differential contribution of early visual areas to the perceptual process of contour processing. , 2004, Journal of neurophysiology.

[120]  H. Bülthoff,et al.  Effects of temporal association on recognition memory , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[121]  David C. Burr,et al.  Seeing biological motion , 1998, Nature.

[122]  S. Edelman,et al.  Cue-Invariant Activation in Object-Related Areas of the Human Occipital Lobe , 1998, Neuron.

[123]  Patrick Cavanagh,et al.  Interattribute apparent motion , 1989, Vision Research.

[124]  J. D. McCarthy,et al.  Local form–motion interactions influence global form perception , 2012, Attention, perception & psychophysics.

[125]  Tutis Vilis,et al.  The lateral occipital complex subserves the perceptual persistence of motion-defined groupings. , 2003, Cerebral cortex.

[126]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[127]  Zoe Kourtzi,et al.  Implied motion from form in the human visual cortex. , 2005, Journal of neurophysiology.

[128]  Yan Zhuo,et al.  Contributions of the Visual Ventral Pathway to Long-Range Apparent Motion , 2003, Science.

[129]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[130]  C Caudek,et al.  Perceiving surface slant from deformation of optic flow. , 1999, Journal of experimental psychology. Human perception and performance.

[131]  A. L. Humphrey,et al.  Anatomical banding of intrinsic connections in striate cortex of tree shrews (Tupaia glis) , 1982, The Journal of comparative neurology.

[132]  P. Tse,et al.  Rotational and translational motion interact independently with form , 2011, Vision Research.

[133]  Steven W. Zucker,et al.  Two Stages of Curve Detection Suggest Two Styles of Visual Computation , 1989, Neural Computation.

[134]  P. Tse,et al.  Stimulus factors affecting illusory rebound motion , 2006, Vision Research.

[135]  Jean Lorenceau,et al.  Orientation dependent modulation of apparent speed: psychophysical evidence , 2002, Vision Research.

[136]  G. Kanizsa,et al.  Organization in Vision: Essays on Gestalt Perception , 1979 .

[137]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[138]  M Kubovy,et al.  The emergence of visual objects in space-time. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[139]  Wilson S. Geisler,et al.  Motion streaks provide a spatial code for motion direction , 1999, Nature.

[140]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[141]  R. von der Heydt,et al.  Illusory contours and cortical neuron responses. , 1984, Science.

[142]  B. Green Figure coherence in the kinetic depth effect. , 1961, Journal of experimental psychology.

[143]  Rainer Goebel,et al.  Apparent Motion: Event-Related Functional Magnetic Resonance Imaging of Perceptual Switches and States , 2002, The Journal of Neuroscience.

[144]  C Caudek,et al.  Discriminating constant from variable angular velocities in structure from motion , 1998, Perception & psychophysics.

[145]  Li Li,et al.  Optimal combination of form and motion cues in human heading perception. , 2010, Journal of vision.

[146]  O. Braddick A short-range process in apparent motion. , 1974, Vision research.

[147]  D. Bradley,et al.  Structure and function of visual area MT. , 2005, Annual review of neuroscience.

[148]  W. Reichardt Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems , 1957 .

[149]  J M Wolfe,et al.  Curvature is a Basic Feature for Visual Search Tasks , 1992, Perception.

[150]  Y. Frégnac,et al.  Orientation dependent modulation of apparent speed: a model based on the dynamics of feed-forward and horizontal connectivity in V1 cortex , 2002, Vision Research.

[151]  C. Gilbert,et al.  Learning to Link Visual Contours , 2008, Neuron.

[152]  John A. Baro,et al.  Apparent motion can be perceived between patterns with dissimilar spatial frequencies , 1988, Vision Research.

[153]  L. Stelmach,et al.  Directed attention and perception of temporal order. , 1991, Journal of experimental psychology. Human perception and performance.

[154]  Mark Edwards,et al.  Motion streaks improve motion detection , 2007, Vision Research.

[155]  Fulvio Domini,et al.  Bayesian Modeling of Perceived Surface Slant from Actively-Generated and Passively-Observed Optic Flow , 2011, PloS one.

[156]  C. Gilbert Adult cortical dynamics. , 1998, Physiological reviews.

[157]  W. Davis The Ecological Approach to Visual Perception , 2012 .

[158]  Green Bf Figure coherence in the kinetic depth effect. , 1961 .

[159]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[160]  Victor A. F. Lamme,et al.  Feedforward, horizontal, and feedback processing in the visual cortex , 1998, Current Opinion in Neurobiology.

[161]  O J Braddick,et al.  Low-level and high-level processes in apparent motion. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[162]  K. Nakayama,et al.  The aperture problem—I. Perception of nonrigidity and motion direction in translating sinusoidal lines , 1988, Vision Research.

[163]  N. Kanwisher,et al.  The lateral occipital complex and its role in object recognition , 2001, Vision Research.

[164]  P. Burt,et al.  Time, distance, and feature trade-offs in visual apparent motion. , 1981, Psychological review.

[165]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[166]  K. Grill-Spector,et al.  The dynamics of object-selective activation correlate with recognition performance in humans , 2000, Nature Neuroscience.

[167]  Colin W G Clifford,et al.  Radial biases in the processing of motion and motion-defined contours by human visual cortex. , 2009, Journal of neurophysiology.

[168]  Thomas D. Albright,et al.  The interpretation of visual motion: Evidence for surface segmentation mechanisms , 1996, Vision Research.

[169]  A Treisman,et al.  Feature analysis in early vision: evidence from search asymmetries. , 1988, Psychological review.

[170]  Gideon P Caplovitz,et al.  Contour discontinuities subserve two types of form analysis that underlie motion processing. , 2006, Progress in brain research.

[171]  P. Tse,et al.  Mechanisms underlying the perceived angular velocity of a rigidly rotating object , 2006, Vision Research.

[172]  James V. Stone,et al.  Object recognition: view-specificity and motion-specificity , 1999, Vision Research.

[173]  G G Haydu,et al.  Perception of Apparent Motion. , 1960, Science.

[174]  M. Lichtenstein,et al.  Spatio-Temporal Factors in Cessation of Smooth Apparent Motion , 1963 .

[175]  T. Albright,et al.  Motion coherency rules are form-cue invariant , 1992, Vision Research.

[176]  Christopher C. Pack,et al.  Integration of Contour and Terminator Signals in Visual Area MT of Alert Macaque , 2004, The Journal of Neuroscience.

[177]  H. Wallach,et al.  The kinetic depth effect. , 1953, Journal of experimental psychology.

[178]  F. Domini,et al.  3-D structure perceived from dynamic information: a new theory , 2003, Trends in Cognitive Sciences.

[179]  Stuart Anstis,et al.  Local versus global perception of ambiguous motion displays. , 2011, Journal of vision.

[180]  W. Metzger,et al.  Laws of Seeing , 2006 .

[181]  Takeo Watanabe,et al.  Separate Processing of Different Global-Motion Structures in Visual Cortex Is Revealed by fMRI , 2005, Current Biology.