Building an occupancy model from sensor networks in office environments

The work presented here aims to answer this question: Using just binary occupancy sensors is it possible to build a behaviour occupancy model over long-term logged data? Sensor measurements are grouped to form artificial words (activities) and documents (set of activities). The goal is to infer the latent topics which are assumed to be the common routines from the observed data. An unsupervised probabilistic model, namely the Latent Dirichlet Allocation (LDA), is applied to automatically discover the latent topics (routines) in the data. Experimental results using real logged data of 24 weeks from an office building, with different number of topics, are shown. The results show the power of the LDA model in extracting relevant patterns from sensor network data.

[1]  Daniel Gatica-Perez,et al.  What did you do today?: discovering daily routines from large-scale mobile data , 2008, ACM Multimedia.

[2]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[3]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Simon A. Dobson,et al.  Activity recognition using temporal evidence theory , 2010, J. Ambient Intell. Smart Environ..

[5]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine-mediated learning.

[6]  Daniel Gatica-Perez,et al.  Discovering routines from large-scale human locations using probabilistic topic models , 2011, TIST.

[7]  Yee Whye Teh,et al.  On Smoothing and Inference for Topic Models , 2009, UAI.

[8]  Juan Carlos Niebles,et al.  Unsupervised Learning of Human Action Categories , 2006 .

[9]  Albert Ali Salah,et al.  T-Patterns Revisited: Mining for Temporal Patterns in Sensor Data , 2010, Sensors.

[10]  Darren Leigh,et al.  The MERL Motion Detector Dataset: 2007 Workshop on Massive Datasets , 2007 .

[11]  Rainer Lienhart,et al.  Image retrieval on large-scale image databases , 2007, CIVR '07.

[12]  Hamid K. Aghajan,et al.  Modeling and Discovering Occupancy Patterns in Sensor Networks Using Latent Dirichlet Allocation , 2011, IWINAC.

[13]  Thomas L. Griffiths,et al.  The Author-Topic Model for Authors and Documents , 2004, UAI.

[14]  J. Brian Burns,et al.  Recovering Social Networks From Massive Track Datasets , 2008, 2008 IEEE Workshop on Applications of Computer Vision.

[15]  Ruslan Salakhutdinov,et al.  Evaluation methods for topic models , 2009, ICML '09.

[16]  Alexei A. Efros,et al.  Discovering object categories in image collections , 2005 .

[17]  M S Magnusson,et al.  Discovering hidden time patterns in behavior: T-patterns and their detection , 2000, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.