Theoretical studies for structures and energetics of RgnN2O (RgHe, Ne, Ar) clusters

Minimum‐energy structures of the Rg2N2O (RgHe, Ne, Ar) clusters have been determined with ab initio MP2 optimization, whereas the minimum‐energy structures of the RgnN2O clusters with n = 3–7 have been obtained with the pairwise additive potentials. Interaction energies and nonadditive three‐body effects of the Rg2N2O ternary complex have been calculated using supermolecule method at MP4 and CCSD(T) levels. It was found from the calculations that there are two minima corresponding to one distorted tetrahedral structure and one planar structure for the ternary complex. The nonadditive three‐body effects were found to be small for Rg2N2O complexes. Our calculations also indicated that, for HenN2O and NenN2O clusters, the first six He and Ne atoms form the first solvation ring around the middle nitrogen of the N2O monomer, while for ArnN2O, the first five Ar atoms form the first solvation ring. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1839–1845, 2003

[1]  Fu-Ming Tao,et al.  Mo/ller–Plesset perturbation investigation of the He2 potential and the role of midbond basis functions , 1992 .

[2]  M. Meuwly,et al.  Size Effects in Cluster Infrared Spectra: the .nu.1 Band of Arn-HCO+ (n = 1-13) , 1995 .

[3]  Yunjie Xu,et al.  The rotational spectrum of the isotopically substituted van der Waals complex ArOCS, obtained using a pulsed beam microwave Fourier transform spectrometer , 1992 .

[4]  R. A. Aziz,et al.  A highly accurate interatomic potential for argon , 1993 .

[5]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[6]  G. I. Gellene,et al.  Ab initio study of Arn–HCO+ (n = 0–6): insight into size dependent cluster ion properties , 2000 .

[7]  C. Jameson,et al.  AB INITIO STUDY OF VAN DER WAALS INTERACTION OF CO2 WITH AR , 1996 .

[8]  K. Schmidt,et al.  Equilibrium structures and approximate HF vibrational red shifts for ArnHF (n=1-14) van der Waals clusters , 1994 .

[9]  W. Meerts,et al.  Hyperfine structure, electric and magnetic properties of 14N2 16O in the ground and first excited bending vibrational state , 1978 .

[10]  H. S. Gutowsky,et al.  Rotational spectra and structures of the Ar2–H35Cl/37Cl trimers , 1987 .

[11]  W. Jäger,et al.  Fourier transform microwave rotational spectra of the Ne2–N2O and Ar2–N2O van der Waals trimers , 1999 .

[12]  Yunjie Xu,et al.  Pulsed Beam Microwave Fourier Transform Measurements on Isotopically Substituted van der Waals Dimer Ne-OCS , 1995 .

[13]  R. Weiss The temporal and spatial distribution of tropospheric nitrous oxide , 1981 .

[14]  Sl,et al.  THE EFFECT OF TWO- AND THREE-BODY INTERACTIONS IN ARNCO2 (N=1,2) ON THE ASYMMETRIC STRETCHING CO2 COORDINATE : AN AB INITIO STUDY , 1997 .

[15]  David T. Anderson,et al.  Sequential solvation of HCl in argon: High resolution infrared spectroscopy of ArnHCl(n=1,2,3) , 1997 .

[16]  G. C. McBane,et al.  An ab initio Potential Energy Surface for the Ne-CO , 1999 .

[17]  O. Dopfer,et al.  Microsolvation of HN2+ in Argon: Infrared Spectra and ab Initio Calculations of Arn−HN2+ (n = 1−13) , 1999 .

[18]  F. Doloresco,et al.  Theoretical study of the He-HCN, Ne-HCN, Ar-HCN, and Kr-HCN complexes , 2001 .

[19]  D. Xie,et al.  Ab initio potential energy surface and rovibrational spectra of Ne–N2O , 2002 .

[20]  Jeanette M. Sperhac,et al.  Infrared spectroscopy of Ar2CO2 trimer: Vibrationally averaged structures, solvent shifts, and three‐body effects , 1996 .

[21]  E. J. Campbell,et al.  The rotational Zeeman effect in the ArOCS van der Waals complex , 1983 .

[22]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[23]  Jäger,et al.  Ground State Average and Partial Substitution Structures of the Ar-N2O van der Waals Dimer. , 1998, Journal of molecular spectroscopy.

[24]  HCl photodissociation on argon clusters: Effects of sequential solvation and librational preexcitation , 2000 .

[25]  M. Szczęśniak,et al.  Ab initio calculations of nonadditive effects , 1992 .

[26]  R. Saykally,et al.  Non-additive intermolecular forces from the spectroscopy of van der Waals trimers: far-infrared spectra and calculations on Ar2-DCl , 1994 .

[27]  Alan K. Burnham,et al.  Measurement of the dispersion in polarizability anisotropies , 1975 .

[28]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[29]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[30]  Yunjie Xu,et al.  Spectroscopic investigation of the ternary Ne–Ne–OCS van der Waals cluster: additive and non-additive interactions , 2000 .

[31]  J. P. Connelly,et al.  The microwave spectrum, structure, and harmonic force field of the van der Waals trimer Ar2–OCS , 1993 .

[32]  M. Meuwly Structures and energetics of Nen–HN2+ clusters , 1999 .

[33]  K. Szalewicz,et al.  Intermolecular potential energy surfaces and spectra of Ne-HCN complex from ab initio calculations , 2001 .

[34]  R. R. Toczyłowski,et al.  Ground state potential energy curves for He2, Ne2, Ar2, He–Ne, He–Ar, and Ne–Ar: A coupled-cluster study , 1999 .

[35]  S. Scheiner,et al.  Nonadditive effects in HF and HCl trimers , 1989 .

[36]  R. Moszynski,et al.  Structure and properties of the weakly bound trimer (H2O)2HCl. Theoretical predictions and comparison with high-resolution rotational spectroscopy , 2001 .

[37]  J. Sadlej,et al.  Ab initio calculations of nonadditive effects in the trimers (H2O)2⋯XY, XY=N2, BF, CS , 2002 .

[38]  Jäger,et al.  Study of the Rotational Spectrum of the Ne-N2O van der Waals Dimer with a Fourier Transform Microwave Spectrometer. , 1998, Journal of molecular spectroscopy.

[39]  B. Schmidt,et al.  Preference of cluster isomers as a result of quantum delocalization: Potential energy surfaces and intermolecular vibrational states of Ne⋯HBr, Ne⋯HI, and HI(Ar) n (n=1-6) , 2001 .

[40]  J. Hutson,et al.  Non-additive intermolecular forces from the spectroscopy of Van der Waals trimers: A comparison of Ar2–HF and Ar2–HCl, including H/D isotope effects , 1997 .

[41]  A. Chédin,et al.  Internuclear potential and equilibrium structure of the nitrous oxide molecule from rovibrational data , 1989 .

[42]  H. Valdés,et al.  Ab initio and DFT studies on van der Waals trimers: The OCS · (CO2)2 complexes , 2002, J. Comput. Chem..

[43]  M. Meuwly,et al.  Infrared predissociation spectra of Nen–HN2+ clusters (n=1–5) , 1998 .

[44]  P. Herman,et al.  Vacuum ultraviolet laser spectroscopy. V. Rovibronic spectra of Ar2 and constants of the ground and excited states , 1988 .

[45]  P. Piecuch,et al.  The nonadditive interactions in the Ar2HF and Ar2HCl clusters: An ab initio study , 1993 .

[46]  H. S. Gutowsky,et al.  Rotational spectra and structures of the Ar2–H/DF trimers , 1987 .