Theoretical studies for structures and energetics of RgnN2O (RgHe, Ne, Ar) clusters
暂无分享,去创建一个
Hua Zhu | Daiqian Xie | Guosen Yan | D. Xie | Hua Zhu | G. Yan
[1] Fu-Ming Tao,et al. Mo/ller–Plesset perturbation investigation of the He2 potential and the role of midbond basis functions , 1992 .
[2] M. Meuwly,et al. Size Effects in Cluster Infrared Spectra: the .nu.1 Band of Arn-HCO+ (n = 1-13) , 1995 .
[3] Yunjie Xu,et al. The rotational spectrum of the isotopically substituted van der Waals complex ArOCS, obtained using a pulsed beam microwave Fourier transform spectrometer , 1992 .
[4] R. A. Aziz,et al. A highly accurate interatomic potential for argon , 1993 .
[5] S. F. Boys,et al. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .
[6] G. I. Gellene,et al. Ab initio study of Arn–HCO+ (n = 0–6): insight into size dependent cluster ion properties , 2000 .
[7] C. Jameson,et al. AB INITIO STUDY OF VAN DER WAALS INTERACTION OF CO2 WITH AR , 1996 .
[8] K. Schmidt,et al. Equilibrium structures and approximate HF vibrational red shifts for ArnHF (n=1-14) van der Waals clusters , 1994 .
[9] W. Meerts,et al. Hyperfine structure, electric and magnetic properties of 14N2 16O in the ground and first excited bending vibrational state , 1978 .
[10] H. S. Gutowsky,et al. Rotational spectra and structures of the Ar2–H35Cl/37Cl trimers , 1987 .
[11] W. Jäger,et al. Fourier transform microwave rotational spectra of the Ne2–N2O and Ar2–N2O van der Waals trimers , 1999 .
[12] Yunjie Xu,et al. Pulsed Beam Microwave Fourier Transform Measurements on Isotopically Substituted van der Waals Dimer Ne-OCS , 1995 .
[13] R. Weiss. The temporal and spatial distribution of tropospheric nitrous oxide , 1981 .
[14] Sl,et al. THE EFFECT OF TWO- AND THREE-BODY INTERACTIONS IN ARNCO2 (N=1,2) ON THE ASYMMETRIC STRETCHING CO2 COORDINATE : AN AB INITIO STUDY , 1997 .
[15] David T. Anderson,et al. Sequential solvation of HCl in argon: High resolution infrared spectroscopy of ArnHCl(n=1,2,3) , 1997 .
[16] G. C. McBane,et al. An ab initio Potential Energy Surface for the Ne-CO , 1999 .
[17] O. Dopfer,et al. Microsolvation of HN2+ in Argon: Infrared Spectra and ab Initio Calculations of Arn−HN2+ (n = 1−13) , 1999 .
[18] F. Doloresco,et al. Theoretical study of the He-HCN, Ne-HCN, Ar-HCN, and Kr-HCN complexes , 2001 .
[19] D. Xie,et al. Ab initio potential energy surface and rovibrational spectra of Ne–N2O , 2002 .
[20] Jeanette M. Sperhac,et al. Infrared spectroscopy of Ar2CO2 trimer: Vibrationally averaged structures, solvent shifts, and three‐body effects , 1996 .
[21] E. J. Campbell,et al. The rotational Zeeman effect in the ArOCS van der Waals complex , 1983 .
[22] C. F. Curtiss,et al. Molecular Theory Of Gases And Liquids , 1954 .
[23] Jäger,et al. Ground State Average and Partial Substitution Structures of the Ar-N2O van der Waals Dimer. , 1998, Journal of molecular spectroscopy.
[24] HCl photodissociation on argon clusters: Effects of sequential solvation and librational preexcitation , 2000 .
[25] M. Szczęśniak,et al. Ab initio calculations of nonadditive effects , 1992 .
[26] R. Saykally,et al. Non-additive intermolecular forces from the spectroscopy of van der Waals trimers: far-infrared spectra and calculations on Ar2-DCl , 1994 .
[27] Alan K. Burnham,et al. Measurement of the dispersion in polarizability anisotropies , 1975 .
[28] T. H. Dunning. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .
[29] T. Dunning,et al. Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .
[30] Yunjie Xu,et al. Spectroscopic investigation of the ternary Ne–Ne–OCS van der Waals cluster: additive and non-additive interactions , 2000 .
[31] J. P. Connelly,et al. The microwave spectrum, structure, and harmonic force field of the van der Waals trimer Ar2–OCS , 1993 .
[32] M. Meuwly. Structures and energetics of Nen–HN2+ clusters , 1999 .
[33] K. Szalewicz,et al. Intermolecular potential energy surfaces and spectra of Ne-HCN complex from ab initio calculations , 2001 .
[34] R. R. Toczyłowski,et al. Ground state potential energy curves for He2, Ne2, Ar2, He–Ne, He–Ar, and Ne–Ar: A coupled-cluster study , 1999 .
[35] S. Scheiner,et al. Nonadditive effects in HF and HCl trimers , 1989 .
[36] R. Moszynski,et al. Structure and properties of the weakly bound trimer (H2O)2HCl. Theoretical predictions and comparison with high-resolution rotational spectroscopy , 2001 .
[37] J. Sadlej,et al. Ab initio calculations of nonadditive effects in the trimers (H2O)2⋯XY, XY=N2, BF, CS , 2002 .
[38] Jäger,et al. Study of the Rotational Spectrum of the Ne-N2O van der Waals Dimer with a Fourier Transform Microwave Spectrometer. , 1998, Journal of molecular spectroscopy.
[39] B. Schmidt,et al. Preference of cluster isomers as a result of quantum delocalization: Potential energy surfaces and intermolecular vibrational states of Ne⋯HBr, Ne⋯HI, and HI(Ar) n (n=1-6) , 2001 .
[40] J. Hutson,et al. Non-additive intermolecular forces from the spectroscopy of Van der Waals trimers: A comparison of Ar2–HF and Ar2–HCl, including H/D isotope effects , 1997 .
[41] A. Chédin,et al. Internuclear potential and equilibrium structure of the nitrous oxide molecule from rovibrational data , 1989 .
[42] H. Valdés,et al. Ab initio and DFT studies on van der Waals trimers: The OCS · (CO2)2 complexes , 2002, J. Comput. Chem..
[43] M. Meuwly,et al. Infrared predissociation spectra of Nen–HN2+ clusters (n=1–5) , 1998 .
[44] P. Herman,et al. Vacuum ultraviolet laser spectroscopy. V. Rovibronic spectra of Ar2 and constants of the ground and excited states , 1988 .
[45] P. Piecuch,et al. The nonadditive interactions in the Ar2HF and Ar2HCl clusters: An ab initio study , 1993 .
[46] H. S. Gutowsky,et al. Rotational spectra and structures of the Ar2–H/DF trimers , 1987 .