Primordial origin and diversification of plasmids in Lyme disease agent bacteria

[1]  A. Sing,et al.  Published data do not support the notion that Borrelia valaisiana is human pathogenic , 2017, Infection.

[2]  S. Reynolds,et al.  Lost in plasmids: next generation sequencing and the complex genome of the tick-borne pathogen Borrelia burgdorferi , 2017, BMC Genomics.

[3]  F. Strle,et al.  There is inadequate evidence to support the division of the genus Borrelia. , 2017, International journal of systematic and evolutionary microbiology.

[4]  C. Fraser,et al.  Plasmid diversity and phylogenetic consistency in the Lyme disease agent Borrelia burgdorferi , 2017, BMC Genomics.

[5]  N. Connally,et al.  Toward a Complete North American Borrelia miyamotoi Genome , 2017, Genome Announcements.

[6]  Christina B. Azodi,et al.  Comprehensive Spatial Analysis of the Borrelia burgdorferi Lipoproteome Reveals a Compartmentalization Bias toward the Bacterial Surface , 2017, Journal of bacteriology.

[7]  E. Ružić-Sabljić,et al.  Progress in the molecular diagnosis of Lyme disease , 2017, Expert review of molecular diagnostics.

[8]  B. Pritt,et al.  Whole Genome Sequence and Comparative Genomics of the Novel Lyme Borreliosis Causing Pathogen, Borrelia mayonii , 2016, PloS one.

[9]  C. H. Eggers,et al.  Phage-mediated horizontal gene transfer of both prophage and heterologous DNA by ϕBB-1, a bacteriophage of Borrelia burgdorferi. , 2016, Pathogens and disease.

[10]  J. Coburn,et al.  Multifunctional and Redundant Roles of Borrelia burgdorferi Outer Surface Proteins in Tissue Adhesion, Colonization, and Complement Evasion , 2016, Front. Immunol..

[11]  Lori Rowe,et al.  Chromosome and Linear Plasmid Sequences of a 2015 Human Isolate of the Tick-Borne Relapsing Fever Spirochete, Borrelia turicatae , 2016, Genome Announcements.

[12]  Arvind Anand,et al.  Consensus computational network analysis for identifying candidate outer membrane proteins from Borrelia spirochetes , 2016, BMC Microbiology.

[13]  Chromosome and Plasmids of the Tick-Borne Relapsing Fever Agent Borrelia hermsii , 2016, Genome Announcements.

[14]  A. Steere,et al.  Differences in Genotype, Clinical Features, and Inflammatory Potential of Borrelia burgdorferi sensu stricto Strains from Europe and the United States , 2016, Emerging infectious diseases.

[15]  H. Blum,et al.  Trans-Atlantic exchanges have shaped the population structure of the Lyme disease agent Borrelia burgdorferi sensu stricto , 2016, Scientific Reports.

[16]  A. Sing,et al.  Borrelia bissettiae sp. nov. and Borrelia californiensis sp. nov. prevail in diverse enzootic transmission cycles , 2016, International journal of systematic and evolutionary microbiology.

[17]  P. Zipfel,et al.  BGA66 and BGA71 facilitate complement resistance of Borrelia bavariensis by inhibiting assembly of the membrane attack complex , 2016, Molecular microbiology.

[18]  M. Postma,et al.  Lyme borreliosis: reviewing potential vaccines, clinical aspects and health economics , 2015, Expert review of vaccines.

[19]  S. Casjens,et al.  Identification of the minimal cytolytic unit for streptolysin S and an expansion of the toxin family , 2015, BMC Microbiology.

[20]  Fanny Gatzmann,et al.  NGS population genetics analyses reveal divergent evolution of a Lyme Borreliosis agent in Europe and Asia. , 2015, Ticks and tick-borne diseases.

[21]  J. Ramos,et al.  The importance of lizards and small mammals as reservoirs for Borrelia lusitaniae in Portugal. , 2015, Environmental microbiology reports.

[22]  G. Stanek,et al.  Complete Genome Sequence of Borrelia afzelii K78 and Comparative Genome Analysis , 2015, PloS one.

[23]  A. Maass,et al.  Genome Sequence of Borrelia chilensis VA1, a South American Member of the Lyme Borreliosis Group , 2015, Genome Announcements.

[24]  A. Kurilshikov,et al.  Complete Genome Sequencing of Borrelia valaisiana and Borrelia afzelii Isolated from Ixodes persulcatus Ticks in Western Siberia , 2014, Genome Announcements.

[25]  Che L. Martin,et al.  Evolutionary genomics of Borrelia burgdorferi sensu lato: findings, hypotheses, and the rise of hybrids. , 2014, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[26]  Saymon Akther,et al.  BorreliaBase: a phylogeny-centered browser of Borrelia genomes , 2014, BMC Bioinformatics.

[27]  Andrea C. Love,et al.  Induction of Type I and Type III Interferons by Borrelia burgdorferi Correlates with Pathogenesis and Requires Linear Plasmid 36 , 2014, PloS one.

[28]  Elizabeth A. Novak,et al.  The cyclic-di-GMP signaling pathway in the Lyme disease spirochete, Borrelia burgdorferi , 2014, Front. Cell. Infect. Microbiol..

[29]  F. Cabello,et al.  Borrelia chilensis, a new member of the Borrelia burgdorferi sensu lato complex that extends the range of this genospecies in the Southern Hemisphere. , 2014, Environmental microbiology.

[30]  X. Ambroggio,et al.  Regulatory Protein BBD18 of the Lyme Disease Spirochete: Essential Role During Tick Acquisition? , 2014, mBio.

[31]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[32]  A. Sing,et al.  Borrelia bavariensis sp. nov. is widely distributed in Europe and Asia. , 2013, International journal of systematic and evolutionary microbiology.

[33]  Brian Stevenson,et al.  Natural Selection Promotes Antigenic Evolvability , 2013, PLoS pathogens.

[34]  Steven E Schutzer,et al.  Inter- and intra-specific pan-genomes of Borrelia burgdorferi sensu lato: genome stability and adaptive radiation , 2013, BMC Genomics.

[35]  S. Norris,et al.  Peaceful coexistence amongst Borrelia plasmids: getting by with a little help from their friends? , 2013, Plasmid.

[36]  P. Zipfel,et al.  CspA from Borrelia burgdorferi Inhibits the Terminal Complement Pathway , 2013, mBio.

[37]  Mollie W. Jewett,et al.  In Vivo Expression Technology Identifies a Novel Virulence Factor Critical for Borrelia burgdorferi Persistence in Mice , 2013, PLoS pathogens.

[38]  P. Zipfel,et al.  BBA70 of Borrelia burgdorferi Is a Novel Plasminogen-binding Protein* , 2013, The Journal of Biological Chemistry.

[39]  Radhey S. Gupta,et al.  A phylogenomic and molecular signature based approach for characterization of the phylum Spirochaetes and its major clades: proposal for a taxonomic revision of the phylum , 2013, Front. Microbiol..

[40]  P. Rosa,et al.  Borrelia burgdorferi Linear Plasmid 28-3 Confers a Selective Advantage in an Experimental Mouse-Tick Infection Model , 2013, Infection and Immunity.

[41]  T. Schwan,et al.  Large Linear Plasmids of Borrelia Species That Cause Relapsing Fever , 2013, Journal of bacteriology.

[42]  S. Casjens,et al.  Distribution of cp32 Prophages among Lyme Disease-Causing Spirochetes and Natural Diversity of Their Lipoprotein-Encoding erp Loci , 2013, Applied and Environmental Microbiology.

[43]  S. Norris,et al.  Analysis of an Ordered, Comprehensive STM Mutant Library in Infectious Borrelia burgdorferi: Insights into the Genes Required for Mouse Infectivity , 2012, PloS one.

[44]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[45]  A. Kurilshikov,et al.  Whole-Genome Sequencing of Borrelia garinii BgVir, Isolated from Taiga Ticks (Ixodes persulcatus) , 2012, Journal of bacteriology.

[46]  P. Rosa,et al.  Requirements for Borrelia burgdorferi plasmid maintenance. , 2012, Plasmid.

[47]  D. Radune,et al.  Genome Stability of Lyme Disease Spirochetes: Comparative Genomics of Borrelia burgdorferi Plasmids , 2012, PloS one.

[48]  Benjamin J. Luft,et al.  Whole-Genome Sequences of Borrelia bissettii, Borrelia valaisiana, and Borrelia spielmanii , 2012, Journal of bacteriology.

[49]  Benjamin J. Luft,et al.  Whole-Genome Sequences of Two Borrelia afzelii and Two Borrelia garinii Lyme Disease Agent Isolates , 2011, Journal of bacteriology.

[50]  Steven E Schutzer,et al.  Pervasive Recombination and Sympatric Genome Diversification Driven by Frequency-Dependent Selection in Borrelia burgdorferi, the Lyme Disease Bacterium , 2011, Genetics.

[51]  Mollie W. Jewett,et al.  Molecular characterization of the Borrelia burgdorferi in vivo-essential protein PncA. , 2011, Microbiology.

[52]  Benjamin J. Luft,et al.  Whole Genome Sequence of an Unusual Borrelia burgdorferi Sensu Lato Isolate , 2011, Journal of bacteriology.

[53]  P. Rosa,et al.  Defining the Plasmid-Borne Restriction-Modification Systems of the Lyme Disease Spirochete Borrelia burgdorferi , 2010, Journal of bacteriology.

[54]  Steven Salzberg,et al.  Mugsy: fast multiple alignment of closely related whole genomes , 2010, Bioinform..

[55]  Benjamin J. Luft,et al.  Whole-Genome Sequences of Thirteen Isolates of Borrelia burgdorferi , 2010, Journal of bacteriology.

[56]  S. Norris,et al.  High-Throughput Plasmid Content Analysis of Borrelia burgdorferi B31 by Using Luminex Multiplex Technology , 2010, Applied and Environmental Microbiology.

[57]  A. Barbour,et al.  Evolution and Distribution of the ospC Gene, a Transferable Serotype Determinant of Borrelia burgdorferi , 2010, mBio.

[58]  D. Dykhuizen,et al.  Evolution of Northeastern and Midwestern Borrelia burgdorferi, United States , 2010, Emerging infectious diseases.

[59]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[60]  R. Iyer,et al.  Identification and molecular characterization of a cyclic-di-GMP effector protein, PlzA (BB0733): additional evidence for the existence of a functional cyclic-di-GMP regulatory network in the Lyme disease spirochete, Borrelia burgdorferi. , 2010, FEMS immunology and medical microbiology.

[61]  N. Rudenko,et al.  Delineation of a New Species of the Borrelia burgdorferi Sensu Lato Complex, Borrelia americana sp. nov , 2009, Journal of Clinical Microbiology.

[62]  E. Mongodin,et al.  Fast, adaptive evolution at a bacterial host-resistance locus: the PFam54 gene array in Borrelia burgdorferi. , 2009, Gene.

[63]  B. Stevenson,et al.  Borrelia burgdorferi RevA Antigen Binds Host Fibronectin , 2009, Infection and Immunity.

[64]  G. Chaconas,et al.  Characterization and in Vitro Reaction Properties of 19 Unique Hairpin Telomeres from the Linear Plasmids of the Lyme Disease Spirochete* , 2009, Journal of Biological Chemistry.

[65]  P. Zipfel,et al.  Borrelia burgdorferi Infection-Associated Surface Proteins ErpP, ErpA, and ErpC Bind Human Plasminogen , 2008, Infection and Immunity.

[66]  J. Fonseca,et al.  Vasculitis-like syndrome associated with Borrelia lusitaniae infection , 2008, Clinical Rheumatology.

[67]  Jean-Michel Claverie,et al.  The Genome of Borrelia recurrentis, the Agent of Deadly Louse-Borne Relapsing Fever, Is a Degraded Subset of Tick-Borne Borrelia duttonii , 2008, PLoS genetics.

[68]  M. Embers,et al.  The Failure of Immune Response Evasion by Linear Plasmid 28-1-Deficient Borrelia burgdorferi Is Attributable to Persistent Expression of an Outer Surface Protein , 2008, Infection and Immunity.

[69]  F. Strle,et al.  Epidemiological aspects and molecular characterization of Borrelia burgdorferi s.l. from southern Germany with special respect to the new species Borrelia spielmanii sp. nov. , 2008, International journal of medical microbiology : IJMM.

[70]  S. Casjens,et al.  Borrelia burgdorferi Complement Regulator-Acquiring Surface Protein 2 (CspZ) as a Serological Marker of Human Lyme Disease , 2007, Clinical and Vaccine Immunology.

[71]  Kevin A. Lawrence,et al.  Genetic basis for retention of a critical virulence plasmid of Borrelia burgdorferi , 2007, Molecular microbiology.

[72]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[73]  P. Shaw,et al.  The critical role of the linear plasmid lp36 in the infectious cycle of Borrelia burgdorferi , 2007, Molecular microbiology.

[74]  Thomas Rattei,et al.  Gepard: a rapid and sensitive tool for creating dotplots on genome scale , 2007, Bioinform..

[75]  郑俊 Maintenance , 2002, The Islamic Law of Personal Status.

[76]  Douglas J. Botkin,et al.  Identification of Potential Virulence Determinants by Himar1 Transposition of Infectious Borrelia burgdorferi B31 , 2006, Infection and Immunity.

[77]  R. Benz,et al.  The BBA01 Protein, a Member of Paralog Family 48 from Borrelia burgdorferi, Is Potentially Interchangeable with the Channel-Forming Protein P13 , 2006, Journal of bacteriology.

[78]  Maria Labandeira-Rey,et al.  Inactivation of the fibronectin‐binding adhesin gene bbk32 significantly attenuates the infectivity potential of Borrelia burgdorferi , 2006, Molecular microbiology.

[79]  J. Leong,et al.  Fibronectin Binding Protein BBK32 of the Lyme Disease Spirochete Promotes Bacterial Attachment to Glycosaminoglycans , 2006, Infection and Immunity.

[80]  R. Marconi,et al.  Demonstration of Cotranscription and 1-Methyl-3-Nitroso-Nitroguanidine Induction of a 30-Gene Operon of Borrelia burgdorferi: Evidence that the 32-Kilobase Circular Plasmids Are Prophages , 2005, Journal of bacteriology.

[81]  A. D. de Silva,et al.  Plasmid requirements for infection of ticks by Borrelia burgdorferi. , 2005, Vector borne and zoonotic diseases.

[82]  A. D. de Silva,et al.  Role of Borrelia burgdorferi Linear Plasmid 25 in Infection of Ixodes scapularis Ticks , 2005, Journal of bacteriology.

[83]  T. Schwan,et al.  Defining Plasmids Required byBorrelia burgdorferifor Colonization of Tick VectorIxodes scapularis(Acari: Ixodidae) , 2005 .

[84]  T. Schwan,et al.  Defining Plasmids Required by Borrelia burgdorferi for Colonization of Tick Vector Ixodes scapularis (Acari: Ixodidae) , 2005, Journal of medical entomology.

[85]  Andrew T. Revel,et al.  bptA (bbe16) is essential for the persistence of the Lyme disease spirochete, Borrelia burgdorferi, in its natural tick vector. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[86]  V. Kitiratschky,et al.  Identification and Functional Characterization of Complement Regulator-Acquiring Surface Protein 1 of the Lyme Disease Spirochetes Borrelia afzelii and Borrelia garinii , 2005, Infection and Immunity.

[87]  G. Baranton,et al.  Western blot analysis of sera from Lyme borreliosis patients according to the genomic species of theBorrelia strains used as antigens , 1993, European Journal of Clinical Microbiology and Infectious Diseases.

[88]  Haruo Watanabe,et al.  BBE02 Disruption Mutants of Borrelia burgdorferi B31 Have a Highly Transformable, Infectious Phenotype , 2004, Infection and Immunity.

[89]  J. Piesman,et al.  Lyme borreliosis in Europe and North America , 2004, Parasitology.

[90]  J. Radolf,et al.  Experimental Assessment of the Roles of Linear Plasmids lp25 and lp28-1 of Borrelia burgdorferi throughout the Infectious Cycle , 2004, Infection and Immunity.

[91]  Steven E Schutzer,et al.  Genetic exchange and plasmid transfers in Borrelia burgdorferi sensu stricto revealed by three-way genome comparisons and multilocus sequence typing. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[92]  A. Papa,et al.  Borrelia valaisiana in Cerebrospinal Fluid , 2004, Emerging Infectious Diseases.

[93]  Robert C. Edgar,et al.  MUSCLE: a multiple sequence alignment method with reduced time and space complexity , 2004, BMC Bioinformatics.

[94]  S. Casjens,et al.  Telomere Exchange between Linear Replicons of Borrelia burgdorferi , 2004, Journal of bacteriology.

[95]  S. Bergström,et al.  Molecular analysis of the channel-forming protein P13 and its paralogue family 48 from different Lyme disease Borrelia species. , 2004, Microbiology.

[96]  M. L. Vieira,et al.  First Isolation of Borrelia lusitaniae from a Human Patient , 2004, Journal of Clinical Microbiology.

[97]  E. Fikrig,et al.  Essential Role for OspA/B in the Life Cycle of the Lyme Disease Spirochete , 2004, The Journal of experimental medicine.

[98]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[99]  J Sühnel,et al.  Comparative analysis of the Borrelia garinii genome. , 2004, Nucleic acids research.

[100]  S. Barthold,et al.  Immunogenicityof Borrelia burgdorferi Arthritis-RelatedProtein , 2003, Infection and Immunity.

[101]  B. Stevenson,et al.  Intra- and Interbacterial Genetic Exchange of Lyme Disease Spirochete erp Genes Generates Sequence Identity Amidst Diversity , 2003, Journal of Molecular Evolution.

[102]  Maria Labandeira-Rey,et al.  The Absence of Linear Plasmid 25 or 28-1 of Borrelia burgdorferi Dramatically Alters the Kinetics of Experimental Infection via Distinct Mechanisms , 2003, Infection and Immunity.

[103]  S. Norris,et al.  A plasmid‐encoded nicotinamidase (PncA) is essential for infectivity of Borrelia burgdorferi in a mammalian host , 2003, Molecular microbiology.

[104]  Douglas J. Botkin,et al.  Characterization of the vls antigenic variation loci of the Lyme disease spirochaetes Borrelia garinii Ip90 and Borrelia afzelii ACAI , 2003, Molecular microbiology.

[105]  M. Saier,et al.  Bacteriophages of Borrelia burgdorferi and other spirochetes. , 2001 .

[106]  S. Norris,et al.  Correlation between plasmid content and infectivity in Borrelia burgdorferi. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[107]  L. Moshfeghi Getting by with a little help from their friends. , 2000, Minnesota medicine.

[108]  J. Bono,et al.  A Second Allele of eppA in Borrelia burgdorferi Strain B31 Is Located on the Previously Undetected Circular Plasmid cp9-2 , 2000, Journal of bacteriology.

[109]  S. Casjens,et al.  Borrelia genomes in the year 2000. , 2000, Journal of molecular microbiology and biotechnology.

[110]  S. Casjens,et al.  Bacteriophages of spirochetes. , 2000, Journal of molecular microbiology and biotechnology.

[111]  Brian Stevenson,et al.  The Relapsing Fever Spirochete Borrelia hermsiiContains Multiple, Antigen-Encoding Circular Plasmids That Are Homologous to the cp32 Plasmids of Lyme Disease Spirochetes , 2000, Infection and Immunity.

[112]  S. Casjens,et al.  Distribution of Twelve Linear Extrachromosomal DNAs in Natural Isolates of Lyme Disease Spirochetes , 2000, Journal of bacteriology.

[113]  O. White,et al.  A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi , 2000, Molecular microbiology.

[114]  M. Nakao,et al.  Genetic Diversity and the Absence of Regional Differences of Borrelia garinii as Demonstrated by ospA and ospB Gene Sequence Analysis , 1999, Microbiology and immunology.

[115]  T. Burkot,et al.  Geographic survey of vector ticks (Ixodes scapularis and Ixodes pacificus) for infection with the Lyme disease spirochete, Borrelia burgdorferi. , 1999, Journal of vector ecology : journal of the Society for Vector Ecology.

[116]  D. Dykhuizen,et al.  Genetic diversity of ospC in a local population of Borrelia burgdorferi sensu stricto. , 1999, Genetics.

[117]  Barbara J. B. Johnson,et al.  Identification of a 47 kDa fibronectin‐binding protein expressed by Borrelia burgdorferi isolate B31 , 1998, Molecular microbiology.

[118]  J. Radolf,et al.  Decorin-Binding Protein of Borrelia burgdorferi Is Encoded within a Two-Gene Operon and Is Protective in the Murine Model of Lyme Borreliosis , 1998, Infection and Immunity.

[119]  F. Frandsen,et al.  European reservoir hosts of Borrelia burgdorferi sensu lato. , 1998, Zentralblatt fur Bakteriologie : international journal of medical microbiology.

[120]  D. Dykhuizen,et al.  A population genetic study of Borrelia burgdorferi sensu stricto from eastern Long Island, New York, suggested frequency-dependent selection, gene flow and host adaptation. , 2004, Hereditas.

[121]  S. Salzberg,et al.  Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi , 1997, Nature.

[122]  S. Casjens,et al.  Telomeres of the linear chromosomes of Lyme disease spirochaetes: nucleotide sequence and possible exchange with linear plasmid telomeres , 1997, Molecular microbiology.

[123]  J. Bono,et al.  The Borrelia burgdorferi circular plasmid cp26: conservation of plasmid structure and targeted inactivation of the ospC gene , 1997, Molecular microbiology.

[124]  S. Norris,et al.  Antigenic Variation in Lyme Disease Borreliae by Promiscuous Recombination of VMP-like Sequence Cassettes , 1997, Cell.

[125]  Haiyang Li,et al.  Crystal structure of Lyme disease antigen outer surface protein A complexed with an Fab. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[126]  J. Schellekens,et al.  Detection of Borrelia afzelii, Borrelia burgdorferi sensu stricto, Borrelia garinii and group VS116 by PCR in skin biopsies of patients with erythema migrans and acrodermatitis chronica atrophicans. , 1997, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[127]  S. Casjens,et al.  Homology throughout the multiple 32-kilobase circular plasmids present in Lyme disease spirochetes , 1997, Journal of bacteriology.

[128]  Gapped BLAST and PSI-BLAST: A new , 1997 .

[129]  J. Carlyon,et al.  Molecular and evolutionary analyses of a variable series of genes in Borrelia burgdorferi that are related to ospE and ospF, constitute a gene family, and share a common upstream homology box , 1996, Journal of bacteriology.

[130]  R. C. Johnson,et al.  Correlation of plasmids with infectivity of Borrelia burgdorferi sensu stricto type strain B31 , 1996, Infection and immunity.

[131]  F. Dorner,et al.  Evidence for lateral transfer and recombination in OspC variation in Lyme disease Borrelia , 1995, Molecular microbiology.

[132]  S. Casjens,et al.  Linear chromosomes of Lyme disease agent spirochetes: genetic diversity and conservation of gene order , 1995, Journal of bacteriology.

[133]  B. E. Davidson,et al.  Conservation of gene arrangement and an unusual organization of rRNA genes in the linear chromosomes of the Lyme disease spirochaetes Borrelia burgdorferi, B. garinii and B. afzelii. , 1994, Microbiology.

[134]  R. Marconi,et al.  Analysis of the distribution and molecular heterogeneity of the ospD gene among the Lyme disease spirochetes: evidence for lateral gene exchange , 1994, Journal of bacteriology.

[135]  D. Haake,et al.  A 9.0-kilobase-pair circular plasmid of Borrelia burgdorferi encodes an exported protein: evidence for expression only during infection , 1994, Infection and immunity.

[136]  B. Luft,et al.  Complete nucleotide sequence of a circular plasmid from the Lyme disease spirochete, Borrelia burgdorferi , 1994, Journal of bacteriology.

[137]  Ruth R. Montgomery,et al.  Outer surface proteins E and F of Borrelia burgdorferi, the agent of Lyme disease , 1994, Infection and immunity.

[138]  B. Luft,et al.  Lyme borreliosis. , 1994, International journal of antimicrobial agents.

[139]  S. Douglas DNA Strider. A Macintosh program for handling protein and nucleic acid sequences. , 1994, Methods in molecular biology.

[140]  R. Marconi,et al.  Variation in the size of the ospA-containing linear plasmid, but not the linear chromosome, among the three Borrelia species associated with Lyme disease. , 1993, Journal of general microbiology.

[141]  A. Hofmann,et al.  Immunological and molecular polymorphisms of OspC, an immunodominant major outer surface protein of Borrelia burgdorferi , 1993, Infection and immunity.

[142]  S. Norris,et al.  Low-passage-associated proteins of Borrelia burgdorferi B31: characterization and molecular cloning of OspD, a surface-exposed, plasmid-encoded lipoprotein , 1992, Infection and immunity.

[143]  S. Bergström,et al.  Molecular analysis of linear plasmid‐encoded major surface proteins, OspA and OspB, of the Lyme disease spirochaete Borrelia burgdorferi , 1989, Molecular microbiology.

[144]  R. C. Johnson,et al.  Characterization of a circular plasmid from Borrelia burgdorferi, etiologic agent of Lyme disease , 1988, Journal of clinical microbiology.

[145]  T. Schwan,et al.  Changes in infectivity and plasmid profile of the Lyme disease spirochete, Borrelia burgdorferi, as a result of in vitro cultivation , 1988, Infection and immunity.

[146]  A. Barbour,et al.  Plasmid analysis of Borrelia burgdorferi, the Lyme disease agent , 1988, Journal of clinical microbiology.

[147]  W. Burgdorfer,et al.  Lyme disease-a tick-borne spirochetosis? , 1983, Science.