Efficient recursive computation of molecular integrals over Cartesian Gaussian functions

Recurrence expressions are derived for various types of molecular integrals over Cartesian Gaussian functions by the use of the recurrence formula for three‐center overlap integrals. A number of characteristics inherent in the recursive formalism allow an efficient scheme to be developed for molecular integral computations. With respect to electron repulsion integrals and their derivatives, the present scheme with a significant saving of computer time is found superior to other currently available methods. A long innermost loop incorporated in the present scheme facilitates a fast computation on a vector processing computer.

[1]  Dermot Hegarty,et al.  Integral evaluation algorithms and their implementation , 1983 .

[2]  Imre G. Csizmadia,et al.  Computational Theoretical Organic Chemistry , 1981 .

[3]  Geerd H. F. Diercksen,et al.  Computational techniques in quantum chemistry and molecular physics : proceedings of the NATO Advanced Study Institute held at Ramsau, Germany, 4-21 September, 1974 , 1975 .

[4]  S. F. Boys Electronic wave functions - I. A general method of calculation for the stationary states of any molecular system , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  Clifford E. Dykstra,et al.  Advanced theories and computational approaches to the electronic structure of molecules , 1984 .

[6]  H. Bernhard Schlegel,et al.  First and second derivatives of two electron integrals over Cartesian Gaussians using Rys polynomials , 1984 .

[7]  Warren J. Hehre,et al.  Computation of electron repulsion integrals involving contracted Gaussian basis functions , 1978 .

[8]  Michel Dupuis,et al.  Numerical integration using rys polynomials , 1976 .

[9]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[10]  H. Bernhard Schlegel,et al.  An efficient algorithm for calculating ab initio energy gradients using s, p Cartesian Gaussians , 1982 .

[11]  S. Huzinaga,et al.  A systematic preparation of new contracted Gaussian‐type orbital sets. III. Second‐row atoms from Li through ne , 1980 .

[12]  Michel Dupuis,et al.  Evaluation of molecular integrals over Gaussian basis functions , 1976 .

[13]  S. Huzinaga,et al.  Gaussian-Expansion Methods for Molecular Integrals , 1966 .

[14]  J. Gillis,et al.  Methods in Computational Physics , 1964 .

[15]  E. Davidson,et al.  One- and two-electron integrals over cartesian gaussian functions , 1978 .

[16]  Michel Dupuis,et al.  Molecular symmetry. III. Second derivatives of electronic energy with respect to nuclear coordinates , 1981 .

[17]  Frank E. Harris,et al.  Evaluation of GTO molecular integrals , 1983 .

[18]  Michel Dupuis,et al.  Computation of electron repulsion integrals using the rys quadrature method , 1983 .