Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries

Battery and fuel cell simulations commonly assume that electrodes are macro-homogeneous and isotropic. These simulations have been used to successfully model performance, but give little insight into predicting failure. In Li-ion battery electrodes, it is understood that local tortuosity impacts charging rates, which may cause increased degradation. This report describes a novel approach to quantifying tortuosity based on a heat transfer analogy applied to X-ray microscopy data of a commercially available LiFePO4 electrode. This combination of X-ray imaging and image-based simulation reveals the microscopic performance of the electrode; notably, the tortuosity was observed to vary significantly depending on the direction considered, which suggests that tortuosity might best be quantified using vectors rather than scalars.

[1]  Nigel P. Brandon,et al.  X-ray nano computerised tomography of SOFC electrodes using a focused ion beam sample-preparation technique , 2010 .

[2]  V. S. Vaidhyanathan,et al.  Transport phenomena , 2005, Experientia.

[3]  I. Abramson,et al.  Effective transport coefficients in heterogeneous media , 1987 .

[4]  D. Brett,et al.  Towards intelligent engineering of SOFC electrodes: a review of advanced microstructural characterisation techniques , 2010 .

[5]  Yijin Liu,et al.  Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. , 2011, Journal of synchrotron radiation.

[6]  Enrique Iglesia,et al.  The effects of diffusion mechanism and void structure on transport rates and tortuosity factors in complex porous structures , 2004 .

[7]  K. Zaghib,et al.  Quantifying tortuosity in porous Li-ion battery materials , 2009 .

[8]  P. Withers X-ray nanotomography , 2007 .

[9]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[10]  Moses Ender,et al.  Three-dimensional reconstruction of a composite cathode for lithium-ion cells , 2011 .

[11]  P. M. Heertjes,et al.  Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor , 1974 .

[12]  V. Remcho,et al.  Assessment of Electroosmotic Perfusion in Capillary Chromatographic Columns Using Electrical Conductivity , 2001 .

[13]  Bernard P. Boudreau,et al.  The diffusive tortuosity of fine-grained unlithified sediments , 1996 .

[14]  Eugene E. Petersen,et al.  Diffusion in a pore of varying cross section , 1958 .

[15]  John Newman,et al.  Optimization of Porosity and Thickness of a Battery Electrode by Means of a Reaction‐Zone Model , 1995 .

[16]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[17]  R. Aller,et al.  Diffusion coefficients in nearshore marine sediments1 , 1982 .

[18]  J. Smith,et al.  Diffusion in catalyst pellets , 1962 .

[19]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[20]  J. Parlange Porous Media: Fluid Transport and Pore Structure , 1981 .

[21]  Nigel P. Brandon,et al.  Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery , 2010 .

[22]  Duncan A. Lockerby,et al.  Switching criteria for hybrid rarefied gas flow solvers , 2009, Proceedings of the Royal Society A.

[23]  Nigel P. Brandon,et al.  Investigation of lithium-ion polymer battery cell failure using X-ray computed tomography , 2011 .

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  John B. Goodenough,et al.  High-Rate LiFePO4 Lithium Rechargeable Battery Promoted by Electrochemically Active Polymers , 2008 .

[26]  Nigel P. Brandon,et al.  Local Tortuosity Inhomogeneities in a Lithium Battery Composite Electrode , 2011 .

[27]  Derek B. Ingham,et al.  Review of the Computational Fluid Dynamics Modeling of Fuel Cells , 2005 .

[28]  J. Gelb,et al.  A High Resolution, Hard X-ray Bio-imaging Facility at SSRL , 2008, Synchrotron radiation news.

[29]  E. Wachsman,et al.  Three-Dimensional Reconstruction of Porous LSCF Cathodes , 2007 .

[30]  Stephen J. Harris,et al.  Measurement of three-dimensional microstructure in a LiCoO2 positive electrode , 2011 .

[31]  Roland Zengerle,et al.  Three-Dimensional Reconstruction of a LiCoO2 Li-Ion Battery Cathode , 2012 .

[32]  Paul Munroe,et al.  Three-Dimensional Microstructural Characterization Using Focused Ion Beam Tomography , 2007 .

[33]  Charles N. Satterfield,et al.  Mass transfer in heterogeneous catalysis , 1969 .

[34]  Peter D. Lee,et al.  Characterization of hierarchical pore structures in ceramics using multiscale tomography , 2011 .

[35]  Nigel P. Brandon,et al.  Multi Length Scale Microstructural Investigations of a Commercially Available Li-Ion Battery Electrode , 2012 .

[36]  Zhangxin Chen,et al.  Critical review of the impact of tortuosity on diffusion , 2007 .

[37]  Phillip A. Williams,et al.  TXM-Wizard: a program for advanced data collection and evaluation in full-field transmission X-ray microscopy , 2012, Journal of synchrotron radiation.

[38]  J. Beaudoin Porosity measurement of some hydrated cementitious systems by high pressure mercury intrusion-microstructural limitations , 1979 .