Mesh adaptation based on transfinite mean value interpolation

Abstract In this paper, the efficiency in mesh updating (r-adaptivity) of the Transfinite Mean value Interpolation (TMI) and its generalization (k-TMI) are compared on three standardized problems to the well-known Inverse Distance Weighted interpolation (IDW) and Radial Basis Function interpolation (RBF) for unstructured data points and the new k-Transfinite Barycentric Interpolation (k-TBI) for structured data points such as, for instance, curves or surfaces in 3D. This is achieved by introducing a dynamical version of these interpolations via an ordinary differential equation that can be solved by standard ODE methods that are more economical than, for instance, solving vector partial differential equations as in the pseudo-solid method. A review of the very recent mathematical foundations of the k-TMI and k-TBI constructed from the function alone (standard) or from the function and its derivatives (enhanced) is provided in the first part of the paper.

[1]  Martin Reimers,et al.  Mean value coordinates in 3D , 2005, Comput. Aided Geom. Des..

[2]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[3]  H. Bijl,et al.  Mesh deformation based on radial basis function interpolation , 2007 .

[4]  Weizhang Huang,et al.  Moving mesh partial differential equations (MMPDES) based on the equidistribution principle , 1994 .

[5]  Frédéric Alauzet,et al.  Two Mesh Deformation Methods Coupled with a Changing-connectivity Moving Mesh Method for CFD Applications , 2014 .

[6]  P. Knupp Algebraic mesh quality metrics for unstructured initial meshes , 2003 .

[7]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[8]  Eric Blades,et al.  A fast mesh deformation method using explicit interpolation , 2012, J. Comput. Phys..

[9]  H. Wendland,et al.  Multivariate interpolation for fluid-structure-interaction problems using radial basis functions , 2001 .

[10]  Tao Ju,et al.  A general geometric construction of coordinates in a convex simplicial polytope , 2007, Comput. Aided Geom. Des..

[11]  Solveig Bruvoll,et al.  Transfinite mean value interpolation in general dimension , 2010, J. Comput. Appl. Math..

[12]  Azzeddine Soulaïmani,et al.  Robust moving mesh algorithms for hybrid stretched meshes: Application to moving boundaries problems , 2016, J. Comput. Phys..

[13]  Christian Schulz,et al.  Pointwise radial minimization: Hermite interpolation on arbitrary domains , 2008, Comput. Graph. Forum.

[14]  A. M. Winslow Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh , 1997 .

[15]  Stephane Etienne,et al.  The low Reynolds number limit of vortex-induced vibrations , 2012 .

[16]  D. Peric,et al.  A computational framework for fluid–structure interaction: Finite element formulation and applications , 2006 .

[17]  Stephane Etienne,et al.  Flow-induced vibrations of in-line cylinder arrangements at low Reynolds numbers , 2016 .

[19]  Joe F. Thompson,et al.  Boundary-fitted coordinate systems for numerical solution of partial differential equations—A review , 1982 .

[20]  Christopher Dyken,et al.  Transfinite mean value interpolation , 2009, Comput. Aided Geom. Des..

[21]  J. Warren,et al.  Mean value coordinates for closed triangular meshes , 2005, SIGGRAPH 2005.

[22]  Michael S. Floater,et al.  Hermite mean value interpolation on polygons , 2018, Comput. Aided Geom. Des..

[23]  Mathieu Desbrun,et al.  A geometric construction of coordinates for convex polyhedra using polar duals , 2005, SGP '05.

[24]  Kai Hormann,et al.  Mean value coordinates for arbitrary planar polygons , 2006, TOGS.

[25]  Stephane Etienne,et al.  Galloping of square cylinders in cross-flow at low Reynolds numbers , 2012 .

[26]  Michael S. Floater,et al.  On the monotonicity of generalized barycentric coordinates on convex polygons , 2016, Comput. Aided Geom. Des..