Code equivalence characterizes finite Frobenius rings
暂无分享,去创建一个
[1] Alexey S. Kuzmin,et al. Linear Codes and Polylinear Recurrences over Finite Rings and Modules , 1999, AAECC.
[2] Jessie Macwilliams. Error-correcting codes for multiple-level transmission , 1961 .
[3] Tsit Yuen Lam,et al. Lectures on modules and rings , 1998 .
[4] Jean Gordon,et al. An Elementary Proof of the MacWilliams Theorem on Equivalence of Codes , 1978, Inf. Control..
[5] W. J. Thron,et al. Encyclopedia of Mathematics and its Applications. , 1982 .
[6] Sergio R. López-Permouth,et al. On the equivalence of codes over rings and modules , 2004, Finite Fields Their Appl..
[7] A. A. Nechaev,et al. FINITE QUASI-FROBENIUS MODULES AND LINEAR CODES , 2004 .
[8] Jay A. Wood,et al. Characters and the Equivalence of Codes , 1996, J. Comb. Theory, Ser. A.
[9] Sergio R. López-Permouth,et al. On the Equivalence of Codes over Finite Rings , 2004, Applicable Algebra in Engineering, Communication and Computing.
[10] Jay A. Wood. Duality for modules over finite rings and applications to coding theory , 1999 .
[11] Richard M. Wilson,et al. A course in combinatorics , 1992 .
[12] Tadasi Nakayama,et al. On Frobeniusean Algebras. I , 1939 .
[13] T. Honold,et al. Characterization of finite Frobenius rings , 2001 .
[14] Marcus Greferath,et al. Finite-Ring Combinatorics and MacWilliams' Equivalence Theorem , 2000, J. Comb. Theory A.
[15] Emil Grosswald,et al. The Theory of Partitions , 1984 .
[16] 中山 正. On frobeniusean algebras , 1941 .