Code equivalence characterizes finite Frobenius rings

In this paper we show that finite rings for which the code equivalence theorem of MacWilliams is valid for Hamming weight must necessarily be Frobenius. This result makes use of a strategy of Dinh and Lopez-Permouth.

[1]  Alexey S. Kuzmin,et al.  Linear Codes and Polylinear Recurrences over Finite Rings and Modules , 1999, AAECC.

[2]  Jessie Macwilliams Error-correcting codes for multiple-level transmission , 1961 .

[3]  Tsit Yuen Lam,et al.  Lectures on modules and rings , 1998 .

[4]  Jean Gordon,et al.  An Elementary Proof of the MacWilliams Theorem on Equivalence of Codes , 1978, Inf. Control..

[5]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[6]  Sergio R. López-Permouth,et al.  On the equivalence of codes over rings and modules , 2004, Finite Fields Their Appl..

[7]  A. A. Nechaev,et al.  FINITE QUASI-FROBENIUS MODULES AND LINEAR CODES , 2004 .

[8]  Jay A. Wood,et al.  Characters and the Equivalence of Codes , 1996, J. Comb. Theory, Ser. A.

[9]  Sergio R. López-Permouth,et al.  On the Equivalence of Codes over Finite Rings , 2004, Applicable Algebra in Engineering, Communication and Computing.

[10]  Jay A. Wood Duality for modules over finite rings and applications to coding theory , 1999 .

[11]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[12]  Tadasi Nakayama,et al.  On Frobeniusean Algebras. I , 1939 .

[13]  T. Honold,et al.  Characterization of finite Frobenius rings , 2001 .

[14]  Marcus Greferath,et al.  Finite-Ring Combinatorics and MacWilliams' Equivalence Theorem , 2000, J. Comb. Theory A.

[15]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[16]  中山 正 On frobeniusean algebras , 1941 .