Development of quantitative and high-throughput assays of polyomavirus and papillomavirus DNA replication.

[1]  H. Leonhardt,et al.  Uncoupling the replication machinery: Replication fork progression in the absence of processive DNA synthesis , 2008, Cell cycle.

[2]  J. Archambault,et al.  Human papillomaviruses activate caspases upon epithelial differentiation to induce viral genome amplification , 2007, Proceedings of the National Academy of Sciences.

[3]  B. Coulombe,et al.  Human Papillomavirus E1 Helicase Interacts with the WD Repeat Protein p80 To Promote Maintenance of the Viral Genome in Keratinocytes , 2007, Journal of Virology.

[4]  C. Vincent,et al.  Quantitative Analysis of the Binding of Simian Virus 40 Large T Antigen to DNA , 2007, Journal of Virology.

[5]  H. Leonhardt,et al.  Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation , 2007, Nucleic acids research.

[6]  P. Phelan,et al.  Model for T-Antigen-Dependent Melting of the Simian Virus 40 Core Origin Based on Studies of the Interaction of the Beta-Hairpin with DNA , 2007, Journal of Virology.

[7]  E. Mini,et al.  Cellular pharmacology of gemcitabine. , 2006, Annals of oncology : official journal of the European Society for Medical Oncology.

[8]  L. Laimins,et al.  Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity , 2006, Reviews in medical virology.

[9]  S. Schuck,et al.  Role of Papillomavirus E1 Initiator Dimerization in DNA Replication , 2005, Journal of Virology.

[10]  H. Leonhardt,et al.  PCNA acts as a stationary loading platform for transiently interacting Okazaki fragment maturation proteins , 2005, Nucleic acids research.

[11]  M. O’Donnell,et al.  Cellular DNA replicases: components and dynamics at the replication fork. , 2005, Annual review of biochemistry.

[12]  K. Ozato,et al.  The Mitotic Chromosome Binding Activity of the Papillomavirus E2 Protein Correlates with Interaction with the Cellular Chromosomal Protein, Brd4 , 2005, Journal of Virology.

[13]  K. Arai,et al.  Control of DNA Replication: Regulation and Activation of Eukaryotic Replicative Helicase, MCM , 2005, IUBMB life.

[14]  F. Dyda,et al.  Binding and unwinding: SF3 viral helicases. , 2005, Current opinion in structural biology.

[15]  J. Harper,et al.  Cyclin/CDK Regulates the Nucleocytoplasmic Localization of the Human Papillomavirus E1 DNA Helicase , 2004, Journal of Virology.

[16]  M. Botchan,et al.  The X-ray structure of the papillomavirus helicase in complex with its molecular matchmaker E2. , 2004, Genes & development.

[17]  J. Mester,et al.  Geldanamycin, an inhibitor of the chaperone activity of HSP90, induces MAPK‐independent cell cycle arrest , 2004, International journal of cancer.

[18]  L. Joshua-Tor,et al.  The DNA-binding Domain of Human Papillomavirus Type 18 E1 , 2004, Journal of Biological Chemistry.

[19]  E. Taylor,et al.  A novel technique with enhanced detection and quantitation of HPV-16 E1- and E2-mediated DNA replication. , 2003, Virology.

[20]  J. Decaprio,et al.  Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen , 2003, Nature.

[21]  S. Titolo,et al.  Characterization of the Minimal DNA Binding Domain of the Human Papillomavirus E1 Helicase: Fluorescence Anisotropy Studies and Characterization of a Dimerization-Defective Mutant Protein , 2003, Journal of Virology.

[22]  S. Titolo,et al.  Characterization of the DNA-Binding Properties of the Origin-Binding Domain of Simian Virus 40 Large T Antigen by Fluorescence Anisotropy , 2003, Journal of Virology.

[23]  W. Mcclements,et al.  DNA replicative functions of highly-expressed, codon-optimized human papillomavirus proteins E1 and E2. , 2003, Journal of virological methods.

[24]  H. Nishitani,et al.  Control of DNA replication licensing in a cell cycle , 2002, Genes to cells : devoted to molecular & cellular mechanisms.

[25]  J. Pipas,et al.  T Antigens of Simian Virus 40: Molecular Chaperones for Viral Replication and Tumorigenesis , 2002, Microbiology and Molecular Biology Reviews.

[26]  L. Joshua-Tor,et al.  Crystal structures of two intermediates in the assembly of the papillomavirus replication initiation complex , 2002, The EMBO journal.

[27]  D. Gilbert,et al.  Sensitivity of the origin decision point to specific inhibitors of cellular signaling and metabolism. , 2002, Experimental cell research.

[28]  L. Thauvette,et al.  Characterization of Recombinant HPV6 and 11 E1 Helicases , 2001, The Journal of Biological Chemistry.

[29]  N. Rosen,et al.  Inhibition of heat shock protein 90 function by ansamycins causes the morphological and functional differentiation of breast cancer cells. , 2001, Cancer research.

[30]  A. Stenlund,et al.  The E1 Initiator Recognizes Multiple Overlapping Sites in the Papillomavirus Origin of DNA Replication , 2001, Journal of Virology.

[31]  S. Titolo,et al.  Identification of Domains of the Human Papillomavirus Type 11 E1 Helicase Involved in Oligomerization and Binding to the Viral Origin , 2000, Journal of Virology.

[32]  N. Rosen,et al.  Inhibition of Hsp90 function by ansamycins causes retinoblastoma gene product-dependent G1 arrest. , 2000, Cancer research.

[33]  W. K. Miskimins,et al.  Mimosine arrests cells in G1 by enhancing the levels of p27(Kip1). , 2000, Experimental cell research.

[34]  R. Hickey,et al.  Effects of gemcitabine and araC on in vitro DNA synthesis mediated by the human breast cell DNA synthesome , 2000, Cancer Chemotherapy and Pharmacology.

[35]  M. Botchan,et al.  Crystal structure of the human papillomavirus type 18 E2 activation domain. , 1999, Science.

[36]  D. Simmons,et al.  Two Regions of Simian Virus 40 T Antigen Determine Cooperativity of Double-Hexamer Assembly on the Viral Origin of DNA Replication and Promote Hexamer Interactions during Bidirectional Origin DNA Unwinding , 1999, Journal of Virology.

[37]  T. Krude Mimosine arrests proliferating human cells before onset of DNA replication in a dose-dependent manner. , 1999, Experimental cell research.

[38]  J. Harper,et al.  Interaction between cyclin-dependent kinases and human papillomavirus replication-initiation protein E1 is required for efficient viral replication. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[39]  F. Stubenrauch,et al.  Transactivation by the E2 Protein of Oncogenic Human Papillomavirus Type 31 Is Not Essential for Early and Late Viral Functions , 1998, Journal of Virology.

[40]  C. Cooper,et al.  Identification of single amino acids in the human papillomavirus 11 E2 protein critical for the transactivation or replication functions. , 1998, Virology.

[41]  J. Choe,et al.  Identification of sequence requirement for the origin of DNA replication in human papillomavirus type 18. , 1997, Virus research.

[42]  P. Lambert,et al.  Bovine papillomavirus type 1 E1 and simian virus 40 large T antigen share regions of sequence similarity required for multiple functions , 1997, Journal of virology.

[43]  P. Silver,et al.  DnaJ/hsp40 chaperone domain of SV40 large T antigen promotes efficient viral DNA replication. , 1997, Genes & development.

[44]  C. Mello,et al.  Initiation of SV40 DNA replication in vitro: analysis of the role played by sequences flanking the core origin on initial synthesis events. , 1997, Virology.

[45]  P. Bullock The initiation of simian virus 40 DNA replication in vitro. , 1997, Critical reviews in biochemistry and molecular biology.

[46]  M. Botchan,et al.  Genetic analysis of the activation domain of bovine papillomavirus protein E2: its role in transcription and replication , 1996, Journal of virology.

[47]  D. McVey,et al.  Mechanisms of simian virus 40 T-antigen activation by phosphorylation of threonine 124 , 1996, Journal of virology.

[48]  J. D. Benson,et al.  Targeted mutagenesis of the human papillomavirus type 16 E2 transactivation domain reveals separable transcriptional activation and DNA replication functions , 1996, Journal of virology.

[49]  D. McCance,et al.  Mapping of HPV-11 E1 binding site and determination of other important cis elements for replication of the origin. , 1996, Virology.

[50]  P. Cook,et al.  Mimosine arrests the cell cycle after cells enter S-phase. , 1996, Experimental cell research.

[51]  A. McBride,et al.  Amino acids critical for the functions of the bovine papillomavirus type 1 E2 transactivator , 1996, Journal of virology.

[52]  S. Holt,et al.  Mutational analysis of the 18-base-pair inverted repeat element at the bovine papillomavirus origin of replication: identification of critical sequences for E1 binding and in vivo replication , 1995, Journal of virology.

[53]  M. Botchan,et al.  E1 recognition sequences in the bovine papillomavirus type 1 origin of DNA replication: interaction between half sites of the inverted repeats , 1995, Journal of virology.

[54]  S. Ōmura,et al.  The neuritogenesis inducer lactacystin arrests cell cycle at both G0/G1 and G2 phases in neuro 2a cells. , 1995, The Journal of antibiotics.

[55]  M. DePamphilis,et al.  Mimosine Arrests DNA Synthesis at Replication Forks by Inhibiting Deoxyribonucleotide Metabolism (*) , 1995, The Journal of Biological Chemistry.

[56]  J. Decaprio,et al.  [7] Cell synchronization , 1995 .

[57]  M. Frattini,et al.  The role of the E1 and E2 proteins in the replication of human papillomavirus type 31b. , 1994, Virology.

[58]  J. Hurwitz,et al.  The bovine papillomavirus E2 protein modulates the assembly of but is not stably maintained in a replication-competent multimeric E1-replication origin complex. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[59]  I. Moarefi,et al.  T-antigen kinase inhibits simian virus 40 DNA replication by phosphorylation of intact T antigen on serines 120 and 123 , 1994, Journal of virology.

[60]  B. Stillman,et al.  The DNA-binding domain of simian virus 40 tumor antigen has multiple functions , 1993, Journal of virology.

[61]  D. McVey,et al.  cdc2 phosphorylation of threonine 124 activates the origin-unwinding functions of simian virus 40 T antigen , 1993, Journal of virology.

[62]  M. Höpfner,et al.  Mutation of the cyclin-dependent kinase phosphorylation site in simian virus 40 (SV40) large T antigen specifically blocks SV40 origin DNA unwinding , 1993, Journal of virology.

[63]  D. Simmons,et al.  Biochemical analysis of mutants with changes in the origin-binding domain of simian virus 40 tumor antigen , 1993, Journal of virology.

[64]  T. Kelly,et al.  Mechanism of activation of simian virus 40 DNA replication by protein phosphatase 2A , 1992, Molecular and cellular biology.

[65]  P. Howley,et al.  Transient replication of human papillomavirus DNAs , 1992, Journal of virology.

[66]  J. D. Villartay,et al.  High level transient gene expression in human lymphoid cells by SV40 large T antigen boost , 1992 .

[67]  M. Ustav,et al.  Identification of the origin of replication of bovine papillomavirus and characterization of the viral origin recognition factor E1. , 1991, The EMBO journal.

[68]  R. Peters,et al.  The rate of nuclear cytoplasmic protein transport is determined by the casein kinase II site flanking the nuclear localization sequence of the SV40 T‐antigen. , 1991, The EMBO journal.

[69]  L. Laimins,et al.  The 68-kilodalton E1 protein of bovine papillomavirus is a DNA binding phosphoprotein which associates with the E2 transcriptional activator in vitro , 1991, Journal of virology.

[70]  P. A. Watson,et al.  Mimosine reversibly arrests cell cycle progression at the G1-S phase border. , 1991, Cytometry.

[71]  M. Botchan,et al.  Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. , 1990, Science.

[72]  D. Simmons,et al.  Identification of simian virus 40 T-antigen residues important for specific and nonspecific binding to DNA and for helicase activity , 1990, Journal of virology.

[73]  P. Tegtmeyer,et al.  Four major sequence elements of simian virus 40 large T antigen coordinate its specific and nonspecific DNA binding , 1990, Journal of virology.

[74]  P. Tegtmeyer,et al.  Three domains in the simian virus 40 core origin orchestrate the binding, melting, and DNA helicase activities of T antigen , 1990, Journal of virology.

[75]  F. Dean,et al.  Binding and unwinding—How T antigen engages the SV40 origin of DNA replication , 1990, Cell.

[76]  T. Kelly,et al.  Activation of SV40 DNA replication in vitro by cellular protein phosphatase 2A. , 1989, The EMBO journal.

[77]  D. McVey,et al.  Properties of the DNA-binding domain of the simian virus 40 large T antigen , 1989, Molecular and cellular biology.

[78]  I. Mohr,et al.  Phosphorylation of large tumour antigen by cdc2 stimulates SV40 DNA replication , 1989, Nature.

[79]  J. Schneider,et al.  Mutations in the phosphorylation sites of simian virus 40 (SV40) T antigen alter its origin DNA-binding specificity for sites I or II and affect SV40 DNA replication activity , 1988, Journal of virology.

[80]  P. Tegtmeyer,et al.  The T-antigen-binding domain of the simian virus 40 core origin of replication , 1987, Journal of virology.

[81]  B. Stillman,et al.  Regulation of SV40 DNA replication by phosphorylation of T antigen. , 1987, The EMBO journal.

[82]  D. Lowy,et al.  Bovine papillomavirus E2 trans-activating gene product binds to specific sites in papillomavirus DNA , 1987, Nature.

[83]  G. Lee-Chen,et al.  Simian virus 40 DNA replication: functional organization of regulatory elements , 1986, Molecular and cellular biology.

[84]  T. Shenk,et al.  A second domain of simian virus 40 T antigen in which mutations can alter the cellular localization of the antigen , 1986, Molecular and cellular biology.

[85]  William D. Richardson,et al.  A short amino acid sequence able to specify nuclear location , 1984, Cell.

[86]  I. Seif,et al.  A common function for polyoma virus large-T and papillomavirus E1 proteins? , 1984, Nature.

[87]  W. Richardson,et al.  Sequence requirements for nuclear location of simian virus 40 large-T antigen , 1984, Nature.

[88]  K. Scheidtmann,et al.  DNA-binding activity of simian virus 40 large T antigen correlates with a distinct phosphorylation state , 1984, Journal of virology.

[89]  R. Tjian,et al.  Topography of simian virus 40 A protein-DNA complexes: arrangement of pentanucleotide interaction sites at the origin of replication , 1983, Journal of virology.

[90]  P. Tegtmeyer,et al.  Topography of simian virus 40 A protein-DNA complexes: arrangement of protein bound to the origin of replication , 1983, Journal of virology.

[91]  D. M. Olive,et al.  Territorial limits and functional anatomy of the simian virus 40 replication origin. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[92]  A. Buchman,et al.  APPENDIX A The SV40 Nucleotide Sequence , 1980 .

[93]  E. Robbins,et al.  Cell synchronization. , 1974, Methods in enzymology.