Franckeite as a naturally occurring van der Waals heterostructure

[1]  Bjarke S. Jessen,et al.  The hot pick-up technique for batch assembly of van der Waals heterostructures , 2016, Nature communications.

[2]  C. Lambert,et al.  Molecular design and control of fullerene-based bi-thermoelectric materials. , 2016, Nature materials.

[3]  A. Castellanos-Gómez,et al.  Gate Controlled Photocurrent Generation Mechanisms in High-Gain In₂Se₃ Phototransistors. , 2015, Nano letters.

[4]  A. Castellanos-Gómez,et al.  Black Phosphorus: Narrow Gap, Wide Applications. , 2015, The journal of physical chemistry letters.

[5]  Jingjie Wu,et al.  Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components. , 2015, Nano letters.

[6]  Andres Castellanos-Gomez,et al.  Photocurrent Generation with Two‐Dimensional van der Waals Semiconductors , 2015 .

[7]  H. Zeng,et al.  An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. , 2015, Chemical Society reviews.

[8]  J. Nicolas,et al.  The ALBA spectroscopic LEEM-PEEM experimental station: layout and performance , 2015, Journal of synchrotron radiation.

[9]  J. Cuevas,et al.  Quantum thermopower of metallic atomic-size contacts at room temperature. , 2015, Nano letters.

[10]  A Gholinia,et al.  Light-emitting diodes by band-structure engineering in van der Waals heterostructures. , 2014, Nature materials.

[11]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[12]  Andres Castellanos-Gomez,et al.  Environmental instability of few-layer black phosphorus , 2014, 1410.2608.

[13]  Nathan Youngblood,et al.  Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current , 2014, Nature Photonics.

[14]  Takashi Taniguchi,et al.  Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics. , 2014, ACS nano.

[15]  P. Ajayan,et al.  Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. , 2014, ACS nano.

[16]  G. Steele,et al.  Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating , 2014, Nature Communications.

[17]  M. Engel,et al.  Black phosphorus photodetector for multispectral, high-resolution imaging. , 2014, Nano letters.

[18]  T. Mueller,et al.  Mechanisms of photoconductivity in atomically thin MoS2. , 2014, Nano letters.

[19]  S. Haigh,et al.  Heterostructures produced from nanosheet-based inks. , 2014, Nano letters.

[20]  Fei Meng,et al.  Vertical heterostructures of layered metal chalcogenides by van der Waals epitaxy. , 2014, Nano letters.

[21]  S. Barja,et al.  Spatially Resolved, Site-Dependent Charge Transfer and Induced Magnetic Moment in TCNQ Adsorbed on Graphene , 2014 .

[22]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[23]  F. Libisch,et al.  Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction , 2014, Nano letters.

[24]  G. Steele,et al.  Isolation and characterization of few-layer black phosphorus , 2014, 1403.0499.

[25]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[26]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[27]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[28]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[29]  Vibhor Singh,et al.  Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping , 2013, 1311.4829.

[30]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[31]  Takashi Taniguchi,et al.  Epitaxial growth of single-domain graphene on hexagonal boron nitride. , 2013, Nature materials.

[32]  Lain-Jong Li,et al.  High‐Gain Phototransistors Based on a CVD MoS2 Monolayer , 2013, Advanced materials.

[33]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[34]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[35]  E. Leary,et al.  Engineering the thermopower of C60 molecular junctions. , 2013, Nano letters.

[36]  T. Taniguchi,et al.  Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure , 2013, Science.

[37]  Mauricio Terrones,et al.  Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides , 2013, Scientific Reports.

[38]  A. Kis,et al.  Nonvolatile memory cells based on MoS2/graphene heterostructures. , 2013, ACS nano.

[39]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[40]  Haifeng Xu,et al.  One-step in situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI) , 2012 .

[41]  Dong‐Wan Kim,et al.  Three-dimensional hierarchical self-supported multi-walled carbon nanotubes/tin(IV) disulfide nanosheets heterostructure electrodes for high power Li ion batteries , 2012 .

[42]  V. Petříček,et al.  The crystal structure of franckeite, Pb21.7Sn9.3Fe4.0Sb8.1S56.9 , 2011 .

[43]  Gavin Conibeer,et al.  Physical properties of very thin SnS films deposited by thermal evaporation , 2011 .

[44]  S. V. Morozov,et al.  Tunable metal-insulator transition in double-layer graphene heterostructures , 2011, 1107.0115.

[45]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[46]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[47]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[48]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[49]  Thomas M Henderson,et al.  Screened hybrid density functionals for solid-state chemistry and physics. , 2009, Physical chemistry chemical physics : PCCP.

[50]  J. Coleman,et al.  High-yield production of graphene by liquid-phase exfoliation of graphite. , 2008, Nature nanotechnology.

[51]  A. Cantarero,et al.  Raman spectra of (PbS)1.18(TiS2)2 misfit compound , 2007 .

[52]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[53]  H. Nesbitt,et al.  High resolution XPS study of the large-band-gap semiconductor stibnite (Sb2S3): Structural contributions and surface reconstruction , 2006 .

[54]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[55]  R. Berndt,et al.  Resonator design for use in scanning tunneling spectroscopy studies of surface electron lifetimes , 2005 .

[56]  Xiao Ya Hu,et al.  Shape-controlled synthesis of PbS microcrystallites by mild solvothermal decomposition of a single-source molecular precursor , 2005 .

[57]  J. Sanz,et al.  XRD, XPS and 119Sn NMR study of tin sulfides obtained by using chemical vapor transport methods , 2003 .

[58]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[59]  E. Makovicky,et al.  Atomic-scale observations of franckeite surface morphology , 2002 .

[60]  M. Cardona,et al.  First- and second-order Raman spectra of galena (PbS) , 2002 .

[61]  Chunrui Wang,et al.  Raman scattering, far infrared spectrum and photoluminescence of SnS2 nanocrystallites , 2002 .

[62]  A. Ortiz-Conde,et al.  Exact analytical solutions of the forward non-ideal diode equation with series and shunt parasitic resistances , 2000 .

[63]  H. Mehner Mössbauer Investigations on Minerals of the Franckeite - Cylindrite Group , 1998 .

[64]  F. Wise,et al.  COHERENT ACOUSTIC PHONONS IN A SEMICONDUCTOR QUANTUM DOT , 1997 .

[65]  F. Wise,et al.  Raman-scattering study of exciton-phonon coupling in PbS nanocrystals , 1997 .

[66]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[67]  G. Parodi,et al.  Improved X-Ray Powder Diffraction Data for Franckeite , 1992, Powder Diffraction.

[68]  K. Kuo,et al.  Crystal lattices and crystal chemistry of cylindrite and franckeite , 1991 .

[69]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[70]  T. Williams,et al.  Electron microscopy of cylindrite and franckeite , 1988 .

[71]  W. Y. Liang,et al.  Raman scattering studies of SnS2 and SnSe2 , 1977 .

[72]  G. Fisher,et al.  Bond ionicity and structural stability of some average-valence-five materials studied by x-ray photoemission , 1977 .

[73]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[74]  G. T. Prior On Teallite, a New Sulphostannite of Lead from Bolivia; and its Relations to Franckeite and Cylindrite , 1904 .