Universality in Infinite Petri Nets

Finite classical Petri nets are non-Turing-complete. Two infi- nite Petri nets are constructed which simulate the linear cellular automa- ton Rule 110 via expanding traversals of the cell array. One net is obtained via direct simulation of the cellular automaton while the other net simulates a Turing machine, which simulates the cellular automa- ton. They use cell models of 21 and 14 nodes, respectively, and simulate the cellular automaton in polynomial time. Based on known results we conclude that these Petri nets are Turing-complete and run in polyno- mial time. We employ an induction proof technique that is applicable for the formal proof of Rule 110 ether and gliders properties further to the constructs presented by Matthew Cook.

[1]  Matthew Cook,et al.  Universality in Elementary Cellular Automata , 2004, Complex Syst..

[2]  Turlough Neary,et al.  Small universal Turing machines , 2008 .

[3]  Dmitry A. Zaitsev A Small Universal Petri Net , 2013, MCU.

[4]  Elisabeth Pelz,et al.  Small Universal Non-deterministic Petri Nets with Inhibitor Arcs , 2014, DCFS.

[5]  Hans-Dieter Burhard On priorities of parallelism: Petri nets under the maximum firing strategy , 1980 .

[6]  T. Agerwala,et al.  Complete model for representing the coordination of asynchronous processes , 1974 .

[7]  Einar Smith Principles of High-Level Net Theory , 1996, Petri Nets.

[8]  Glynn Winskel,et al.  Petri Nets, Event Structures and Domains, Part I , 1981, Theor. Comput. Sci..

[9]  C. Petri Kommunikation mit Automaten , 1962 .

[10]  Javier Esparza,et al.  Decidability and Complexity of Petri Net Problems - An Introduction , 1996, Petri Nets.

[11]  Arnold L. Rosenberg,et al.  Counter machines and counter languages , 1968, Mathematical systems theory.

[12]  Ivan Korec,et al.  Small Universal Register Machines , 1996, Theor. Comput. Sci..

[13]  James L. Peterson,et al.  A Note on Colored Petri Nets , 1980, Inf. Process. Lett..

[14]  Turlough Neary On the computational complexity of spiking neural P systems , 2010, Natural Computing.

[15]  Matthew Cook,et al.  A Concrete View of Rule 110 Computation , 2009, CSP.

[16]  D. Zaitsev,et al.  State equations and equivalent transformations for timed petri nets , 1997 .

[17]  Elisabeth Pelz,et al.  Small Universal Petri Nets with Inhibitor Arcs , 2013, ArXiv.

[18]  Turlough Neary,et al.  Small Weakly Universal Turing Machines , 2007, FCT.

[19]  Dmitry A. Zaitsev,et al.  Infinite Petri Nets as Models of Grids , 2015 .

[20]  F. Vernadat,et al.  The tool TINA – Construction of abstract state spaces for petri nets and time petri nets , 2004 .

[21]  Józef Winkowski Reachability in Contextual Nets , 2002, Fundam. Informaticae.

[22]  Dmitry A. Zaitsev Small Polynomial Time Universal Petri Nets , 2013, ArXiv.