Hydrophobe Effekte – Ansichten und Tatsachen

Das Bestreben relativ unpolarer Verbindungen, sich in wasriger Losung aneinander zu lagern, wird mit dem Begriff hydrophobe Wechselwirkungen beschrieben. Diese Wechselwirkungen sind in vielen Gebieten der Chemie, einschlieslich der Chemie in vivo, von entscheidender Bedeutung. Enzym-Substrat-Wechselwirkungen, die Anordnung von Lipiden in biologischen Membranen, die Aggregation oberflachenaktiver Stoffe und kinetische Solvenseffekte in wasserreichen Losungsmittelsystemen – sie alle werden in erster Linie durch hydrophobe Wechselwirkungen bestimmt. Trotz enormer Anstrengungen weis man noch wenig uber die Hydratation unpolarer Molekule und uber die nichtkovalenten Wechselwirkungen zwischen diesen Molekulen in Wasser. Wenn man sich nun die Frage stellt, was denn die treibende Kraft hinter hydrophoben Wechselwirkungen ist, so fuhrt dies zu der Forderung, die herausragenden Eigenschaften flussigen Wassers genau zu verstehen. Diese ubersicht beschreibt einige neue Erkenntnisse auf diesem Gebiet aus den letzten zehn Jahren. Schwerpunkte sind sowohl die hydrophobe Hydratation als auch hydrophobe Wechselwirkungen, denn beide Phanomene hangen ganz eng zusammen. Es hat sich gezeigt, das viele der bisherigen Sichtweisen zutiefst unbefriedigend sind, und man hat mutige Versuche unternommen, die treibende Kraft fur hydrophobe Wechselwirkungen zwischen zwei oder vielen Molekulen zu verstehen. Hier wird eine zugegebenerweise personliche Auswahl experimenteller und theoretischer Entwicklungen der letzten Zeit vorgestellt und, wenn notig, durch Hinweise auf relevante fruhere Studien erganzt.

[1]  Y. Marcus,et al.  Enthalpies of solution and solvation of amides in N,N-dimethylformamide: Application of the random contact point approach , 1988 .

[2]  Y. Marcus Preferential solvation in mixed solvents. Part 5.—Binary mixtures of water and organic solvents , 1990 .

[3]  F. Menger Groups of Organic Molecules That Operate Collectively , 1991 .

[4]  J. Engberts,et al.  Description of solvent dependence of rate constants in terms of pairwise group Gibbs function interaction parameters. Medium effects for hydrolysis of p-methoxyphenyl dichloroacetate in aqueous solutions containing urea and alkyl-substituted ureas , 1987 .

[5]  Alfons Geiger,et al.  Molecular dynamics study of the hydration of Lennard‐Jones solutes , 1979 .

[6]  K. Dill Dominant forces in protein folding. , 1990, Biochemistry.

[7]  D. E. White,et al.  Heat capacities of aqueous argon from 306 to 578 K , 1985 .

[8]  Koichiro Nakanishi,et al.  Hydrophobic hydration of inert gases: Thermodynamic properties, inherent structures, and normal-mode analysis , 1991 .

[9]  P. Privalov,et al.  Stability of protein structure and hydrophobic interaction. , 1988, Advances in protein chemistry.

[10]  A. Ben-Naim Solvent‐induced interactions: Hydrophobic and hydrophilic phenomena , 1989 .

[11]  RELATION BETWEEN SURFACTANT STRUCTURE AND PROPERTIES OF SPHERICAL MICELLES - 1-ALKYL-4-ALKYLPYRIDINIUM HALIDE SURFACTANTS , 1991 .

[12]  P. Claesson,et al.  A phenomenological theory of long-range hydrophobic attraction forces based on a square-gradient variational approach , 1989 .

[13]  P. Rossky,et al.  Benzene-benzene interaction in aqueous solution , 1980 .

[14]  W. Kauzmann Some factors in the interpretation of protein denaturation. , 1959, Advances in protein chemistry.

[15]  Frank H. Stillinger,et al.  Revised central force potentials for water , 1978 .

[16]  F. Franks Hydrophobic interactions—a historical perspective , 1982 .

[17]  C. V. Krishnan,et al.  Models having the thermodynamic properties of aqueous solutions of tetraalkylammonium halides , 1972 .

[18]  Steven F. Dec,et al.  Heats of solution of gaseous hydrocarbons in water at 15, 25, and 35°C , 1985 .

[19]  Hans-Jörg Schneider,et al.  Mechanisms of Molecular Recognition : Investigations of Organic Host–Guest Complexes , 1991 .

[20]  K. Harata,et al.  Complex formation of hexakis(2,3,6-tri-O-methyl)-α-cyclodextrin with substituted benzenes in aqueous solution , 1988 .

[21]  R. Wood,et al.  Freezing temperatures and densities of solutions of some hydrocarbons and sodium oleate inN-methylacetamide. Evidence for a solvophobic interaction , 1977 .

[22]  P. Rossky,et al.  Molecular librations and solvent orientational correlations in hydrophobic phenomena , 1982 .

[23]  David E. Smith,et al.  Entropy of association of methane in water : a new molecular dynamics computer simulation , 1992 .

[24]  J. Ramos,et al.  The enthalpy and entropy of cavity formation in liquids and Corresponding States Principle , 1990 .

[25]  M. Symons,et al.  Solvation of acetone in protic and aprotic solvents and binary solvent mixtures , 1985 .

[26]  T. Kunitake Synthetische Doppelschichtmembranen: Molekül‐Design, Selbstorganisation und Anwendungen , 1992 .

[27]  Ronald Breslow,et al.  Hydrophobic acceleration of Diels-Alder reactions , 1980 .

[28]  S. Gill,et al.  Heats of solution of gaseous hydrocarbons in water at 25°C , 1984 .

[29]  Alexander A. Rashin,et al.  Hydration phenomena, classical electrostatics, and the boundary element method , 1990 .

[30]  J. A. C. Rullmann,et al.  A polarizable water model for calculation of hydration energies , 1988 .

[31]  Potentials Of Average Force For An Interaction Site Model Of Aqueous Alcohols: A Molecular Model For The Hydrophobic Bond , 1988 .

[32]  E. Clementi,et al.  Methanol in water solution at 300 K , 1982 .

[33]  A. Pohorille,et al.  Theory of hydrophobicity: transient cavities in molecular liquids. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Manish Sharma,et al.  Aggregation behavior of hydrotropic compounds in aqueous solution , 1989 .

[35]  H. Scheraga,et al.  Effect of protein-solvent interactions on protein conformation. , 1981, Annual review of biophysics and bioengineering.

[36]  J. Mayoral,et al.  Development of a model to explain the influence of the solvent on the rate and selectivity of diels–alder reactions , 1991 .

[37]  Charles L. Brooks,et al.  Thermodynamics of aqueous solvation: Solution properties of alcohols and alkanes , 1987 .

[38]  R H Wood,et al.  Differences between pair and bulk hydrophobic interactions. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Morel,et al.  Evaluation of thermodynamic functions relative to cavity formation in liquids: uses and misuses of Scaled Particle Theory , 1981 .

[40]  G. Pollack,et al.  Why Gases Dissolve in Liquids , 1991, Science.

[41]  Brian W. Matthews,et al.  Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of Ile 3 , 1988, Nature.

[42]  T C Terwilliger,et al.  Influence of interior packing and hydrophobicity on the stability of a protein. , 1989, Science.

[43]  Monte Carlo calculations in the isothermal-isobaric ensemble. 1. Liquid water , 1977 .

[44]  J. Engberts,et al.  Carbonyl stretching frequency characteristics for the strongly hydrophobic solute, N-cyclohexyl-2-pyrrolidone in binary aqueous mixtures at 298.15 K. Evidence for a two-domain model for 2-butoxyethanol–water mixtures , 1992 .

[45]  J. Nokami,et al.  Allylation of aldehydes and ketones in the presence of water by allylic bromides, metallic tin, and aluminum , 1983 .

[46]  A. Fersht,et al.  Contribution of hydrophobic interactions to protein stability , 1988, Nature.

[47]  T. H. Lilley,et al.  The enthalpies of interaction of some amides with urea in water at 25 °C , 1988 .

[48]  Y. Marcus Preferential solvation in mixed solvents. Part 6.—Binary mixtures containing methanol, ethanol, acetone or triethylamine and another organic solvent , 1991 .

[49]  H. Scheraga,et al.  A Method for Predicting Nucleation Sites for Protein Folding Based on Hydrophobic Contacts , 1978 .

[50]  Michael H. Abraham,et al.  Free energies, enthalpies, and entropies of solution of gaseous nonpolar nonelectrolytes in water and nonaqueous solvents. The hydrophobic effect , 1982 .

[51]  D. Chandler The dielectric constant and related equilibrium properties of molecular fluids: Interaction site cluster theory analysis , 1977 .

[52]  Hideki Tanaka Integral equation and Monte Carlo study on hydrophobic effects: Size dependence of apolar solutes on solute–solute interactions and structures of water , 1987 .

[53]  B Honig,et al.  Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. , 1991, Science.

[54]  B. Lee,et al.  Solvent reorganization contribution to the transfer thermodynamics of small nonpolar molecules , 1991, Biopolymers.

[55]  K. P. Murphy,et al.  In Reply: The Meaning of Hydrophobicity , 1990 .

[56]  A. Travers To bend or…? , 1991, Current Biology.

[57]  G. Sarkisov,et al.  The solvation and hydrophobic interaction of non-polar molecules in water in the approximation of interatomic potentials: The Monte Carlo method , 1974 .

[58]  William L. Jorgensen,et al.  Efficient computation of absolute free energies of binding by computer simulations. Application to the methane dimer in water , 1988 .

[59]  F. Greco Polar, aprotic solvents and the hydrophobic effect , 1984 .

[60]  H. Schneider Mechanismen der molekularen Erkennung : Untersuchungen an organischen Wirt-Gast-Komplexen , 1991 .

[61]  W. Lim,et al.  Alternative packing arrangements in the hydrophobic core of λrepresser , 1989, Nature.

[62]  D. F. Evans,et al.  Micelle size in ethylammonium nitrate as determined by classical and quasi-elastic light scattering , 1983 .

[63]  H. Schneider,et al.  Host-guest chemistry. 14. Solvent and salt effects on binding constants of organic substrates in macrocyclic host compounds. A general equation measuring hydrophobic binding contributions , 1988 .

[64]  W. L. Jorgensen,et al.  Origin of the strong binding of adenine to a molecular tweezer , 1990 .

[65]  B. Montgomery Pettitt,et al.  Application of an extended RISM equation to dipolar and quadrupolar fluids , 1982 .

[66]  P. Attard Long-range attraction between hydrophobic surfaces , 1989 .

[67]  M. Lucas Size effect in transfer of nonpolar solutes from gas or solvent to another solvent with a view on hydrophobic behavior , 1976 .

[68]  Y. Guissani,et al.  A computer‐simulation study of hydrophobic hydration of rare gases and of methane. I. Thermodynamic and structural properties , 1991 .

[69]  J. Herzfeld Understanding hydrophobic behavior. , 1991, Science.

[70]  K. Nakanishi,et al.  A Monte Carlo study on the size dependence in hydrophobic hydration , 1981 .

[71]  A. Fersht,et al.  Energetics of complementary side-chain packing in a protein hydrophobic core. , 1989, Biochemistry.

[72]  Steven F. Dec,et al.  Enthalpies of aqueous solution of noble gases at 25°C , 1985 .

[73]  Michele Marchesi,et al.  Molecular dynamics simulation of water near walls using an improved wall—water interaction potential , 1984 .

[74]  R. Battino,et al.  Solubility of Gases in Liquids. 15. High‐Precision Determination of Henry Coefficients for Carbon Monoxide in Liquid Water at 278 to 323 K , 1982 .

[75]  K. Shinoda,et al.  "Iceberg" formation and solubility , 1977 .

[76]  C. Tanford,et al.  Interfacial free energy and the hydrophobic effect. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[77]  C. Chothia Structural invariants in protein folding , 1975, Nature.

[78]  D. E. Anderson,et al.  pH-induced denaturation of proteins: a single salt bridge contributes 3-5 kcal/mol to the free energy of folding of T4 lysozyme. , 1990, Biochemistry.

[79]  Stig Stenholm,et al.  On to experiment , 1988, Nature.

[80]  G. Karlstroem,et al.  New intermolecular energy calculation scheme: applications to potential surface and liquid properties of water , 1990 .

[81]  T. Terwilliger,et al.  Repacking protein interiors. , 1991, Trends in biotechnology.

[82]  J. Andrew McCammon,et al.  The structure of liquid water at an extended hydrophobic surface , 1984 .

[83]  H. Friedman Lewis-Randall to McMillan-Mayer conversion for the thermodynamic excess functions of solutions. Part II. Excess energy and volume , 1972 .

[84]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[85]  G. Blackburn,et al.  Aqueous solutions containing amino acids and peptides. Part 13.—Enthalpy of dilution and osmotic coefficients of some N-acetyl amino acid amides and some N-acetyl peptide amides at 298.15 K , 1982 .

[86]  W. G. McMillan,et al.  The Statistical Thermodynamics of Multicomponent Systems , 1945 .

[87]  Per Stenius,et al.  Direct measurement of temperature-dependent interactions between non-ionic surfactant layers , 1986 .

[88]  M. Karplus,et al.  Protein secondary structure prediction with a neural network. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[89]  V. Parsegian,et al.  Hydration forces between phospholipid bilayers , 1989 .

[90]  D. Chandler,et al.  Theory of the hydrophobic effect , 1977 .

[91]  Harold A. Scheraga,et al.  Free energies of hydration of solute molecules. 1. Improvement of the hydration shell model by exact computations of overlapping volumes , 1987 .

[92]  T. Alber,et al.  Mutational effects on protein stability. , 1989, Annual review of biochemistry.

[93]  P. Rossky,et al.  The equilibrium solvation structure for the solvent‐separated hydrophobic bond , 1985 .

[94]  H. Eugene Stanley,et al.  Effect of defects on molecular mobility in liquid water , 1991, Nature.

[95]  J. Gajewski,et al.  Effect of polar solvents on the rates of Claisen rearrangements: assessment of ionic character , 1989 .

[96]  B. Berne,et al.  HYDROPHOBIC INTERACTION BETWEEN A METHANE MOLECULE AND A PARAFFIN WALL IN LIQUID WATER , 1988 .

[97]  D. Chandler,et al.  Hydrophobic solvation of nonspherical solutes , 1980 .

[98]  P. Privalov,et al.  Partial specific heat capacity of benzene and of toluene in aqueous solution determined calorimetrically for a broad temperature range , 1988 .

[99]  F. Diederich,et al.  Complexation of Neutral Molecules by Cyclophane Hosts , 1988 .

[100]  C. Jolicoeur,et al.  A comprehensive thermodynamic investigation of water-ethylene glycol mixtures at 5, 25, and 45°C , 1988 .

[101]  J. Israelachvili,et al.  Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions. , 1985, Biochemistry.

[102]  Fumio Hirata,et al.  An extended rism equation for molecular polar fluids , 1981 .

[103]  S. Gill,et al.  Heat of solution of methane in water from 0 to 50.degree.C , 1986 .

[104]  P. A. Bash,et al.  Calculation of the relative change in binding free energy of a protein-inhibitor complex. , 1987, Science.

[105]  Maurice R. Eftink,et al.  Cyclodextrin–adamantanecarboxylate inclusion complexes: A model system for the hydrophobic effect , 1982 .

[106]  Peter A. Kollman,et al.  A new method for carrying out free energy perturbation calculations: Dynamically modified windows , 1989 .

[107]  G. Barone,et al.  Prediction of excess enthalpies for ternary aqueous solutions of nonelectrolytes , 1980 .

[108]  K. Sharp The hydrophobic effect , 1991 .

[109]  Hideki Tanaka,et al.  Computer experiments on aqueous solutions. VI. Potential energy function for tert‐butyl alcohol dimer and molecular dynamics calculation of 3 mol % aqueous solution of tert‐butyl alcohol , 1984 .

[110]  E. Wilhelm Thermodynamics of solutions: selected aspects , 1990 .

[111]  H. Christenson,et al.  Very long range attractive forces between uncharged hydrocarbon and fluorocarbon surfaces in water , 1988 .

[112]  P. Privalov,et al.  The hydrophobic effect: a reappraisal , 1989 .

[113]  R. Pierotti,et al.  THE SOLUBILITY OF GASES IN LIQUIDS1 , 1963 .

[114]  S. K. Suri,et al.  Interactions in aqueous nonelectrolyte systems. Gibbs energy of interaction of the ether group with the hydroxyl group and the amide group , 1985 .

[115]  T. Kunitake,et al.  Synthetic Bilayer Membranes: Molecular Design, Self‐Organization, and Application , 1992 .

[116]  D. N. Glew AQUEOUS SOLUBILITY AND THE GAS-HYDRATES. THE METHANE-WATER SYSTEM1 , 1962 .

[117]  V. Ramamurthy Organic photochemistry in organized media , 1987 .

[118]  J. Brady,et al.  Semifluorinated hydrocarbons: primitive surfactant molecules , 1988 .

[119]  C. Jolicoeur,et al.  Geometric relaxation in water. Its role in hydrophobic hydration , 1982 .

[120]  Jiali Gao,et al.  Absolute free energy of solvation from Monte Carlo simulations using combined quantum and molecular mechanical potentials , 1992 .

[121]  B Honig,et al.  Extracting hydrophobic free energies from experimental data: relationship to protein folding and theoretical models. , 1991, Biochemistry.

[122]  William L. Jorgensen,et al.  Quantum and statistical mechanical studies of liquids. 25. Solvation and conformation of methanol in water , 1983 .

[123]  Henry S. Frank,et al.  Free Volume and Entropy in Condensed Systems III. Entropy in Binary Liquid Mixtures; Partial Molal Entropy in Dilute Solutions; Structure and Thermodynamics in Aqueous Electrolytes , 1945 .

[124]  Eckhard Spohr,et al.  Computer simulation of the water/platinum interface , 1989 .

[125]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[126]  J. Vance,et al.  The Vapor Pressure of Zinc in the Range 300°—360°C , 1951 .

[127]  R. Lemieux Rhône-Poulenc Lecture. The origin of the specificity in the recognition of oligosaccharides by proteins , 1989 .

[128]  R. Battino,et al.  Solubility of gases in liquids. XVI. Henry's law coefficients for nitrogen in water at 5 to 50°C , 1984 .

[129]  B. Lee Isoenthalpic and isoentropic temperatures and the thermodynamics of protein denaturation. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[130]  Barry W. Ninham,et al.  Role of solvent structure in solution theory , 1977 .

[131]  Bruce J. Berne,et al.  A Monte Carlo simulation of the hydrophobic interaction , 1979 .

[132]  S. Gill,et al.  Enthalpies of solution of butanes in water from 5 to 45.degree.C , 1987 .

[133]  The enthalpy and heat capacity of liquid water and the ice polymorphs from a random network model , 1980 .

[134]  S. Larsen,et al.  Aza Diels-Alder reactions in water: Cyclocondensation of C-acyl iminium ions with cyclopentadiene , 1986 .

[135]  A. Soper,et al.  A neutron-diffraction study of tetramethylammonium chloride in aqueous solution , 1990 .

[136]  M. Symons,et al.  Infrared and nuclear magnetic resonance studies pertaining to the cage model for solutions of acetone in water , 1982 .

[137]  H. Schneider,et al.  Frontiers in Supramolecular Organic Chemistry and Photochemistry , 1991 .

[138]  C L Brooks,et al.  Thermodynamics of amide hydrogen bond formation in polar and apolar solvents. , 1989, Journal of molecular biology.

[139]  G. Rose,et al.  Hydrophobicity of amino acid residues in globular proteins. , 1985, Science.

[140]  Norbert Muller,et al.  Search for a realistic view of hydrophobic effects , 1990 .

[141]  D. F. Evans,et al.  Micelle formation above 100°C , 1982 .

[142]  M. Symons,et al.  Spectroscopic studies of the solvation of amides with N—H groups. Part 1.—The carbonyl group , 1989 .

[143]  K. Nakanishi,et al.  Monte Carlo studies on the hydrophobic hydration in dilute aqueous solutions of nonpolar molecules , 1979 .

[144]  Jerry D. Clark,et al.  Water as a solvent for the Claisen rearrangement: practical implications for synthetic organic chemistry , 1989 .

[145]  E. Kool,et al.  Dichotomous salt effects in the hydrophobic acceleration of the benzoin condensation , 1988 .

[146]  F. M. Menger Aggregate organischer Moleküle mit Kollektiveigenschaften , 1991 .

[147]  P. Rossky,et al.  Solvent molecular dynamics in regions of hydrophobic hydration , 1986 .

[148]  Harold A. Scheraga,et al.  Structure of Water and Hydrophobic Bonding in Proteins. I. A Model for the Thermodynamic Properties of Liquid Water , 1962 .

[149]  H. Scheraga,et al.  Hydration of Inert Solutes. A Molecular Dynamics Study , 1982 .

[150]  A. Pohorille,et al.  Cavities in molecular liquids and the theory of hydrophobic solubilities. , 1990, Journal of the American Chemical Society.

[151]  S. Swaminathan,et al.  Monte Carlo computer simulation of hydrophobic bonding , 1979 .

[152]  P. Rossky,et al.  Molecular conformational equilibria in liquids , 1986 .

[153]  K. P. Murphy,et al.  Common features of protein unfolding and dissolution of hydrophobic compounds. , 1990, Science.

[154]  R. Battino,et al.  Solubility of Gases in Liquids. 13. High-Precision Determination of Henry's Constants for Methane and Ethane in Liquid Water at 275 to 328 K , 1981 .

[155]  D. F. Evans,et al.  Why micelles form in water and hydrazine. A reexamination of the origins of hydrophobicity , 1983 .

[156]  H. Berendsen,et al.  Molecular dynamics simulation of a smectic liquid crystal with atomic detail , 1988 .

[157]  C. Boettcher,et al.  Stereochemistry and curvature effects in supramolecular organization and separation processes of micellar N-alkylaldonamide mixtures , 1990 .

[158]  O. Howarth Reassessment of hydrophobic bonding , 1975 .

[159]  A. Wallqvist Incorporating intramolecular degrees of freedom in simulations of polarizable liquid water , 1990 .

[160]  J. Engberts,et al.  STEREOCHEMICAL ASPECTS OF THE HYDRATION OF CARBOHYDRATES - KINETIC MEDIUM EFFECTS OF MONOSACCHARIDES ON A WATER-CATALYZED HYDROLYSIS REACTION , 1990 .

[161]  Mihaly Mezei,et al.  Monte Carlo computer simulation study of the hydrophobic effect. Potential of mean force for [(CH4)2]aq at 25 and 50 °C , 1982 .

[162]  H. Christenson,et al.  Cavitation and the Interaction Between Macroscopic Hydrophobic Surfaces , 1988, Science.

[163]  B. Zaslavsky,et al.  Methods of Analysis of the Relative Hydrophobicity of Biological Solutes , 1987, Physical organic Chemistry.

[164]  G. Cevc Hydration force and the interfacial structure of the polar surface , 1991 .

[165]  A. Ben-Naim Solvent effects on protein association and protein folding , 1990, Biopolymers.

[166]  D. F. Evans,et al.  Micelle formation in hydrazine−water mixtures , 1985 .

[167]  H. Diogo,et al.  A further view on the calculation of the enthalpy of cavity formation in liquids. The influence of the cavity size and shape , 1988 .

[168]  Shoshana J. Wodak,et al.  Molecular dynamics study of methane hydration and methane association in a polarizable water phase , 1993 .

[169]  R. Battino,et al.  Low-pressure solubility of gases in liquid water , 1977 .

[170]  R. Pierotti,et al.  Aqueous Solutions of Nonpolar Gases1 , 1965 .

[171]  François Diederich,et al.  Strength of molecular complexation of apolar solutes in water and in organic solvents is predictable by linear free energy relationships: a general model for solvation effects on apolar binding , 1990 .

[172]  Hans Ågren,et al.  A diabatic model for photoionization. Application to the inner valence x‐ray photoelectron spectrum of acetylene , 1986 .

[173]  W. Wen,et al.  Calculation of Gurney parameters for aqueous tetraalkylammonium halides based on Friedman's cosphere-overlap model , 1974 .

[174]  B. Matthews,et al.  Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. , 1992, Science.

[175]  Lawrence R. Pratt,et al.  Theory of Hydrophobic Effects , 1985 .

[176]  M. Rao,et al.  Hydrophobic hydration around a pair of apolar species in water , 1979 .

[177]  D. Stauffer,et al.  Concerning the thermodynamics of molecular recognition in aqueous and organic media. Evidence for significant heat capacity effects , 1990 .

[178]  John J. Kozak,et al.  Solute‐Solute Interactions in Aqueous Solutions , 1968 .

[179]  B. Ninham,et al.  Interactions between water—stable hydrophobic Langmuir—Blodgett monolayers on mica , 1986 .

[180]  Stanley,et al.  Isochoric differential scattering functions in liquid water: The fifth neighbor as a network defect. , 1990, Physical review letters.

[181]  Volker Tresp,et al.  Dielectric Relaxation Rate and Static Dielectric Permittivity of Water and Aqueous Solutions at High Pressures , 1989 .

[182]  L. Toma,et al.  Solvent effect as the result of frontier molecular orbital interaction. V. Diels-Alder with heterodienophiles: a unified approach to the solvent effect of the Diels-Alder reactions , 1990 .

[183]  D. Chandler,et al.  Effects of solute--solvent attractive forces on hydrophobic correlations , 1980 .

[184]  A. Tani Non-polar solute-water pair correlation functions , 1983 .

[185]  P. Privalov Stability of proteins: small globular proteins. , 1979, Advances in protein chemistry.

[186]  Martin Karplus,et al.  SOLVATION. A MOLECULAR DYNAMICS STUDY OF A DIPEPTIDE IN WATER. , 1979 .

[187]  F. Stillinger,et al.  Molecular Dynamics Study of Liquid Water , 1971 .

[188]  C. V. Krishnan,et al.  Enthalpies of alkyl sulfonates in water, heavy water, and water-alcohol mixtures and the interaction of water with methylene groups , 1973 .

[189]  A. Laaksonen,et al.  Molecular dynamics and NMR study of methane-water systems , 1991 .

[190]  J. Engberts,et al.  Activation parameters for chemical reactions in solution , 1985 .

[191]  William L. Jorgensen,et al.  Free energy of TIP4P water and the free energies of hydration of CH4 and Cl- from statistical perturbation theory , 1989 .

[192]  I. Wadsö,et al.  Calorimetric measurements on slightly soluble gases in water Enthalpies of solution of helium, neon, argon, krypton, xenon, methane, ethane, propane, n-butane, and oxygen at 288.15, 298.15, and 308.15 K , 1984 .

[193]  O. Matsuoka,et al.  CI study of the water dimer potential surface , 1976 .

[194]  K. Nakanishi,et al.  Computer experiments of aqueous solutions. V. Monte Carlo calculation on the hydrophobic interaction in 5 mol % methanol solution , 1984 .

[195]  Y. Queneau,et al.  Aqueous cycloadditions using glyco-organic substrates. 1. Stereochemical course of the reaction , 1987 .

[196]  C. V. Krishnan,et al.  Studies of hydrophobic bonding in aqueous alcohols: Enthalpy measurements and model calculations , 1973 .

[197]  E. Grunwald Thermodynamic properties of nonpolar solutes in water and the structure of hydrophobic hydration shells. , 1986, Journal of the American Chemical Society.

[198]  Harold A. Scheraga,et al.  Free energies of hydration of solute molecules. 3. Application of the hydration shell model to charged organic molecules , 1987 .

[199]  R. Sartorio,et al.  Enthalpies of dilution of aqueous solutions containing ‘structure-breaking’ solutes and polyols. Biuret–polyol–water and thiourea–polyol–water systems at 298.16 K , 1989 .

[200]  Solvation thermodynamics of biopolymers. I. Separation of the volume and surface interactions with estimates for proteins , 1989, Biopolymers.

[201]  H. Berendsen,et al.  THERMODYNAMICS OF CAVITY FORMATION IN WATER - A MOLECULAR-DYNAMICS STUDY , 1982 .

[202]  K. Miller,et al.  Solutions of inert gases in water , 1968 .

[203]  M. Karplus,et al.  Hidden thermodynamics of mutant proteins: a molecular dynamics analysis. , 1989, Science.

[204]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[205]  A. Lattes,et al.  Formamide, a water substitute. 12. Krafft temperature and micelle formation of ionic surfactants in formamide , 1986 .

[206]  W. Lim,et al.  Deciphering the message in protein sequences: tolerance to amino acid substitutions. , 1990, Science.

[207]  Arieh Warshel,et al.  Incorporating electric polarizabilities in water-water interaction potentials , 1990 .

[208]  W. L. Jorgensen,et al.  Monte Carlo simulation of differences in free energies of hydration , 1985 .

[209]  Henry S. Frank,et al.  Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure , 1957 .

[210]  R. L. Baldwin,et al.  Temperature dependence of the hydrophobic interaction in protein folding. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[211]  D. Bratko,et al.  Monte Carlo simulation of hydrophobic interaction , 1987 .

[212]  R. Wood,et al.  Enthalpy of dilution of aqueous mixtures of amides, sugars, urea, ethylene glycol, and pentaerythritol at 25°C: Enthalpy of interaction of the hydrocarbon, amide, and hydroxyl functional groups in dilute aqueous solutions , 1976 .

[213]  Kyoko Watanabe,et al.  Molecular dynamics study of the hydrophobic interaction in an aqueous solution of krypton , 1986 .

[214]  S J Wodak,et al.  Contribution of the hydrophobic effect to protein stability: analysis based on simulations of the Ile-96----Ala mutation in barnase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[215]  J M Sturtevant,et al.  Heat capacity and entropy changes in processes involving proteins. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[216]  H. Hertz,et al.  Hydrophobic Interactions in Aqueous Mixtures of Methanol, Ethanol, Acetonitrile, and Dimethyl-Formamide , 1982 .

[217]  B. Jönsson Monte carlo simulations of liquid water between two rigid walls , 1981 .

[218]  Michiel Sprik,et al.  COMPUTER-SIMULATION OF THE DYNAMICS OF INDUCED POLARIZATION FLUCTUATIONS IN WATER , 1991 .

[219]  P. Rossky,et al.  Model dependence of quantum isotope effects in liquid water , 1991 .

[220]  A. Clark,et al.  Solute interactions in dilute solutions. Part 2.—A statistical mechanical study of the hydrophobic interaction , 1977 .

[221]  K. Heinzinger,et al.  A molecular dynamics study of water between Lennard-Jones walls , 1983 .

[222]  W. L. Jorgensen Comment on simulations of liquid ammonia based on quantum mechanical potential functions , 1981 .

[223]  J. Engberts,et al.  ALKYL SUBSTITUENT EFFECTS ON THE NEUTRAL HYDROLYSIS OF 1-ACYL-(3-SUBSTITUTED)-1,2,4-TRIAZOLES IN HIGHLY AQUEOUS REACTION MEDIA - THE IMPORTANCE OF SOLVATION , 1991 .

[224]  Charles L. Brooks,et al.  The thermodynamics of solvophobic effects: A molecular‐dynamics study of n‐butane in carbon tetrachloride and water , 1990 .

[225]  M. Karplus,et al.  The potential of mean force between polyatomic molecules in polar molecular solvents , 1985 .

[226]  T. Halicioǧlu,et al.  SOLVENT EFFECTS ON CIS‐TRANS AZOBENZENE ISOMERIZATION: A DETAILED APPLICATION OF A THEORY OF SOLVENT EFFECTS ON MOLECULAR ASSOCIATION * , 1969 .

[227]  K. Dill Theory for the folding and stability of globular proteins. , 1985, Biochemistry.

[228]  C. V. Krishnan,et al.  Model calculations for Setchenow coefficients , 1974 .

[229]  F. Diederich,et al.  Strong enthalpically driven complexation of neutral benzene guests in aqueous solution , 1988 .

[230]  Harold A. Scheraga,et al.  Free energies of hydration of solute molecules. IV: Revised treatment of the hydration shell model , 1988 .

[231]  C. Cramer,et al.  An SCF Solvation Model for the Hydrophobic Effect and Absolute Free Energies of Aqueous Solvation , 1992, Science.

[232]  J. Israelachvili,et al.  Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solutions , 1984 .

[233]  S. Gill,et al.  Anomalous heat capacity of hydrophobic solvation , 1985 .

[234]  P. Linse Monte Carlo simulation of liquid–liquid benzene–water interface , 1987 .

[235]  J. Valleau,et al.  Water‐like particles at surfaces. I. The uncharged, unpolarized surface , 1987 .

[236]  K. Dill,et al.  Charge effects on folded and unfolded proteins. , 1990, Biochemistry.

[237]  William L. Jorgensen,et al.  Monte Carlo simulation of n‐butane in water. Conformational evidence for the hydrophobic effect , 1982 .

[238]  M. Abraham Thermodynamics of solution of homologous series of solutes in water , 1984 .

[239]  D. Mirejovsky,et al.  HEAT CAPACITIES OF SOLUTION FOR ALCOHOLS IN POLAR SOLVENTS AND THE NEW VIEW OF HYDROPHOBIC EFFECTS , 1983 .

[240]  J. Engberts,et al.  Application of the Savage-Wood treatment to the quantitative analysis of kinetic solvent effects in highly aqueous binary solutions , 1986 .

[241]  Arieh Ben-Naim,et al.  Standard thermodynamics of transfer. Uses and misuses , 1978 .

[242]  J. Luche,et al.  Selective tin and zinc mediated allylations of carbonyl compounds in aqueous media , 1985 .

[243]  Michael T. Bashford,et al.  Enthalpies of dilution of aqueous decyl-, dodecyl-, tetradecyl-, and hexadecyltrimethylammonium bromides at 10, 25, 40, and 55.degree.C , 1985 .

[244]  G. Borghesani,et al.  Solute-solute-solvent interactions in dilute aqueous solutions of aliphatic diols. Excess enthalpies and gibbs free energies , 1989 .

[245]  J. Engberts,et al.  INITIAL-STATE AND TRANSITION-STATE EFFECTS ON DIELS-ALDER REACTIONS IN WATER AND MIXED AQUEOUS SOLVENTS , 1992 .

[246]  Richard Wolfenden,et al.  Comparing the polarities of the amino acids: side-chain distribution coefficients between the vapor phase, cyclohexane, 1-octanol, and neutral aqueous solution , 1988 .

[247]  G. Alagona,et al.  Some preliminary results from a Monte Carlo study of a dilute aqueous solution of ethanol , 1982 .

[248]  Jacob N. Israelachvili,et al.  Entropic forces between amphiphilic surfaces in liquids , 1992 .

[249]  Ronald Breslow,et al.  Hydrophobic Effects on Simple Organic Reactions in Water , 1991 .

[250]  Harold L. Friedman,et al.  Lewis-Randall to McMillan-Mayer conversion for the thermodynamic excess functions of solutions. Part I. Partial free energy coefficients , 1972 .

[251]  C. Angell,et al.  Heat capacities of H2O+H2O2, and H2O+N2H4, binary solutions: Isolation of a singular component for Cp of supercooled water , 1980 .

[252]  Y. Ishikawa,et al.  Self-assembly of bilayer membranes in organic solvents by novel amphiphilic compounds , 1989 .

[253]  Frank H. Stillinger,et al.  Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory , 1973 .

[254]  K. Esselink,et al.  Computer simulations of a water/oil interface in the presence of micelles , 1990, Nature.

[255]  H. Christenson,et al.  Forces between fluorocarbon surfactant monolayers: salt effects on the hydrophobic interaction , 1989 .

[256]  Rosa Crovetto,et al.  Solubilities of inert gases and methane in H2O and in D2O in the temperature range of 300 to 600 K , 1982 .

[257]  R. Wood,et al.  Freezing points of aqueous alcohols. Free energy of interaction of the CHOH, CH2, CONH and CC functional groups in dilute aqueous solutions , 1978 .

[258]  Anders Wallqvist,et al.  Molecular dynamics study of a hydrophobic aggregate in an aqueous solution of methane , 1991 .

[259]  W. L. Jorgensen Free energy calculations: a breakthrough for modeling organic chemistry in solution , 1989 .

[260]  A. Ben-Naim Statistical Mechanical Study of Hydrophobic Interaction. I. Interaction between Two Identical Nonpolar Solute Particles , 1971 .

[261]  Interaction of hydrophobized filaments in aqueous electrolyte solutions , 1988 .

[262]  E. Ruckenstein The contributions of cavity and iceberg formations to hydrophobic bonding , 1992 .

[263]  François Diederich Cyclophane zur Komplexierung von Neutralmolekülen , 1988 .

[264]  William L. Jorgensen,et al.  Solvent effects on a Diels-Alder reaction from computer simulations , 1991 .

[265]  A. D. McLachlan,et al.  Solvation energy in protein folding and binding , 1986, Nature.

[266]  William L. Jorgensen,et al.  Aromatic-aromatic interactions: free energy profiles for the benzene dimer in water, chloroform, and liquid benzene , 1990 .

[267]  D. F. Evans,et al.  Attractive forces between uncharged hydrophobic surfaces: direct measurements in aqueous solution. , 1985, Science.

[268]  Solute-solute potential of mean force for non-polar molecules in water , 1984 .

[269]  B. Monosmith,et al.  Collision-induced Raman scattering from water and aqueous solutions , 1989 .

[270]  J. Israelachvili,et al.  Hydration or steric forces between amphiphilic surfaces , 1990 .

[271]  S. D. Christian,et al.  Vapor pressure studies of hydrophobic interactions. formation of benzene-benzene and cyclohexane-cyclohexanol dimers in dilute aqueous solution , 1981 .

[272]  M. Symons Water structure and reactivity , 1981 .

[273]  T. Terwilliger,et al.  Energetics of repacking a protein interior. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[274]  H. Friedman,et al.  The thermodynamics of protein stability. Cold destabilization as a general phenomenon. , 1988, Biophysical chemistry.

[275]  J. Engberts,et al.  STEREOCHEMICAL ASPECTS OF HYDRATION OF CARBOHYDRATES IN AQUEOUS-SOLUTIONS .2. KINETIC MEDIUM EFFECTS , 1992 .

[276]  J. Engberts,et al.  Chapter 3. Group additivity and the effects of added solutes on the kinetics of reactions in aqueous solutions: a link between thermodynamics and kinetics , 1990 .

[277]  J. Hildebrand,et al.  Is there a "hydrophobic effect"? , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[278]  W. J. Becktel,et al.  Protein stability curves , 1987, Biopolymers.

[279]  William L. Jorgensen,et al.  Use of statistical perturbation theory for computing solvent effects on molecular conformation: butane in water , 1987 .

[280]  J. Spitzer,et al.  Gibbs energies of interaction of the CH2 and CHOH groups from freezing point data for aqueous binary mixtures of D-mannitol,myo-inositol, and cyclohexanol , 1984 .

[281]  Giorgina Corongiu,et al.  Molecular dynamics simulations of liquid water using the NCC ab initio potential , 1990 .

[282]  S. Swaminathan,et al.  Monte Carlo studies on the structure of a dilute aqueous solution of methane , 1978 .

[283]  S. Gill,et al.  Heats of solution of ethane and propane in water from 0 to 50.degree.C , 1987 .

[284]  J. Engberts,et al.  ANALYSIS OF KINETIC DATA FOR REACTIONS IN BINARY AQUEOUS MIXTURES USING KIRKWOOD-BUFF INTEGRAL-FUNCTIONS CHARACTERIZING PREFERENTIAL SOLVATION , 1992 .

[285]  C. Chothia The nature of the accessible and buried surfaces in proteins. , 1976, Journal of molecular biology.

[286]  F. Stillinger,et al.  Improved simulation of liquid water by molecular dynamics , 1974 .

[287]  D. Beveridge,et al.  STRUCTURAL ANALYSIS OF MOLECULAR SOLUTIONS BASED ON QUASI-COMPONENT DISTRIBUTION FUNCTIONS. APPLICATION TO (H2CO)AQ AT 25°C , 1980 .

[288]  William C. Swope,et al.  A molecular dynamics method for calculating the solubility of gases in liquids and the hydrophobic hydration of inert-gas atoms in aqueous solution , 1984 .

[289]  R. Breslow,et al.  A water soluble tin hydride reagent , 1990 .

[290]  M. Karplus,et al.  Integral equation model for aqueous solvatlon of polyatomic solutes: Application to the determination of the free energy surface for the internal motion of biomolecules , 1986 .

[291]  C. Chothia Principles that determine the structure of proteins. , 1984, Annual review of biochemistry.

[292]  R. B. Hermann Use of solvent cavity area and number of packed solvent molecules around a solute in regard to hydrocarbon solubilities and hydrophobic interactions. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[293]  Michael A. Bukatin,et al.  Continuum-based calculations of hydration entropies and the hydrophobic effect , 1991 .

[294]  Jan B. F. N. Engberts,et al.  Diels-Alder reactions in aqueous solutions. Enforced hydrophobic interactions between diene and dienophile , 1991 .

[295]  R. Pierotti,et al.  A scaled particle theory of aqueous and nonaqueous solutions , 1976 .

[296]  William L. Jorgensen,et al.  Theoretical studies of medium effects on conformational equilibria , 1983 .

[297]  K. Dill,et al.  Partitioning of nonpolar solutes into bilayers and amorphous n-alkanes , 1990 .

[298]  K A Dill,et al.  The meaning of hydrophobicity. , 1990, Science.

[299]  J. Andrew McCammon,et al.  Dynamics and design of enzymes and inhibitors , 1986 .

[300]  H. Scheraga,et al.  Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[301]  K. Dill,et al.  Solvent denaturation and stabilization of globular proteins. , 1991, Biochemistry.

[302]  R. Wood,et al.  Enthalpies of dilution of aqueous systems containing hexamethylenetetramine and other nonelectrolytes , 1982 .

[303]  M. Pedley,et al.  Solute interactions in dilute aqueous solutions. Part 4.—Microcalorimetric study of ternary mixtures of urea and hydrophobic species , 1981 .

[304]  Richard D. Cramer,et al.  "Hydrophobic interaction" and solvation energies: discrepancies between theory and experimental data , 1977 .

[305]  William L. Jorgensen,et al.  Monte Carlo simulations of alkanes in water: hydration numbers and the hydrophobic effect , 1985 .

[306]  K. Esselink,et al.  Molecular dynamics simulations of oil solubilization in surfactant solutions , 1993 .

[307]  B. Lee,et al.  The physical origin of the low solubility of nonpolar solutes in water , 1985, Biopolymers.

[308]  B. Derjaguin,et al.  Direct measurements of long-range surface forces in gas and liquid media , 1982 .

[309]  P. Claverie,et al.  Improvements of the continuum model. 1. Application to the calculation of the vaporization thermodynamic quantities of nonassociated liquids , 1988 .

[310]  M. Marchesi Molecular dynamics simulation of liquid water between two walls , 1983 .

[311]  J. Schellman,et al.  Thermodynamic stability and point mutations of bacteriophage T4 lysozyme. , 1984, Journal of molecular biology.

[312]  S. K. Suri,et al.  Freezing temperatures of aqueous solutions of methyl formate and ethyl acetate with a variety of nonelectrolytes. Gibbs energy of interaction of the ester group with other functional groups , 1986 .