An efficient computational approach for prior sensitivity analysis and cross‐validation

Prior sensitivity analysis and cross‐validation are important tools in Bayesian statistics. However, due to the computational expense of implementing existing methods, these techniques are rarely used. In this paper, the authors show how it is possible to use sequential Monte Carlo methods to create an efficient and automated algorithm to perform these tasks. They apply the algorithm to the computation of regularization path plots and to assess the sensitivity of the tuning parameter in g‐prior model selection. They then demonstrate the algorithm in a cross‐validation context and use it to select the shrinkage parameter in Bayesian regression. The Canadian Journal of Statistics 38:47–64; 2010 © 2010 Statistical Society of Canada

[1]  G. C. McDonald,et al.  Instabilities of Regression Estimates Relating Air Pollution to Mortality , 1973 .

[2]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[3]  J. Geweke,et al.  Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .

[4]  T. Stamey,et al.  Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. II. Radical prostatectomy treated patients. , 1989, The Journal of urology.

[5]  A. Rademaker,et al.  Re: Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. , 1990, The Journal of urology.

[6]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[7]  E. George,et al.  Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .

[8]  Kerrie Mengersen,et al.  [Bayesian Computation and Stochastic Systems]: Rejoinder , 1995 .

[9]  L. Wasserman,et al.  Local sensitivity diagnostics for Bayesian inference , 1995 .

[10]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[11]  P. Gustafson Local Sensitivity of Inferences to Prior Marginals , 1996 .

[12]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[13]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[14]  Mario Peruggia,et al.  On the variability of case-deletion importance sampling weights in the Bayesian linear model , 1997 .

[15]  G. Crooks Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible Markovian Systems , 1998 .

[16]  Brani Vidakovic,et al.  Wavelet-Based Nonparametric Bayes Methods , 1998 .

[17]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[18]  Eric R. Ziegel,et al.  Practical Nonparametric and Semiparametric Bayesian Statistics , 1998, Technometrics.

[19]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[20]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[21]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[22]  Paul Gustafson,et al.  On cross‐validation of Bayesian models , 2001 .

[23]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[24]  N. Chopin A sequential particle filter method for static models , 2002 .

[25]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[26]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[27]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[28]  N. Chopin Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference , 2004, math/0508594.

[29]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[30]  S. Bhattacharya,et al.  Importance re-sampling {MCMC} for cross-validation in inverse problems , 2007 .

[31]  Jean-Michel Marin,et al.  Bayesian Core: A Practical Approach to Computational Bayesian Statistics , 2010 .

[32]  Arnaud Doucet,et al.  Stability of sequential Monte Carlo samplers via the Foster-Lyapunov condition , 2008 .

[33]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[34]  Nick Whiteley,et al.  A modern perspective on auxiliary particle filters , 2008 .

[35]  S. MacEachern,et al.  Case-deletion importance sampling estimators: Central limit theorems and related results , 2008, 0807.0725.

[36]  Arnaud Doucet,et al.  On the Utility of Graphics Cards to Perform Massively Parallel Simulation of Advanced Monte Carlo Methods , 2009, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.