Efficient and accurate numerical schemes for a hydro-dynamically coupled phase field diblock copolymer model

In this paper, we consider numerical approximations of a hydro-dynamically coupled phase field diblock copolymer model, in which the free energy contains a kinetic potential, a gradient entropy, a GinzburgLandau double well potential, and a long range nonlocal type potential. We develop a set of second order time marching schemes for this system using the Invariant Energy Quadratization approach for the double well potential, the projection method for the NavierStokes equation, and a subtle implicit-explicit treatment for the stress and convective term. The resulting schemes are linear and lead to symmetric positive definite systems at each time step, thus they can be efficiently solved. We further prove that these schemes are unconditionally energy stable. Various numerical experiments are performed to validate the accuracy and energy stability of the proposed schemes.

[1]  Nikos Hadjichristidis,et al.  Block Copolymers: Synthetic Strategies, Physical Properties, and Applications , 2002 .

[2]  Xiaofeng Yang,et al.  Numerical approximations for a phase-field moving contact line model with variable densities and viscosities , 2017, J. Comput. Phys..

[3]  Xiaofeng Yang,et al.  Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends , 2016, J. Comput. Phys..

[4]  Jia Zhao,et al.  Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method , 2017, J. Comput. Phys..

[5]  Jia Zhao,et al.  Numerical approximations to a new phase field model for two phase flows of complex fluids , 2016 .

[6]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[7]  Xiaofeng Yang,et al.  Error analysis of stabilized semi-implicit method of Allen-Cahnequation , 2009 .

[8]  Jie Shen,et al.  Efficient energy stable numerical schemes for a phase field moving contact line model , 2015, J. Comput. Phys..

[9]  Xiaofeng Yang,et al.  Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows , 2010 .

[10]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[11]  Andreas Prohl,et al.  Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows , 2003, Numerische Mathematik.

[12]  Jie Shen,et al.  Fourierization of the Legendre--Galerkin method and a new space--time spectral method , 2007 .

[13]  K. Kawasaki,et al.  Equilibrium morphology of block copolymer melts , 1986 .

[14]  S. Lecommandoux,et al.  On the physics of block copolymers , 2006 .

[15]  Jian‐Guo Liu,et al.  Projection method I: convergence and numerical boundary layers , 1995 .

[16]  Lili Ju,et al.  Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model , 2017 .

[17]  Chao Yuan,et al.  SELF-CONSISTENT MEAN FIELD MODEL OF HYDROGEL AND ITS NUMERICAL SIMULATION , 2013 .

[18]  Daozhi Han,et al.  Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model , 2017, J. Comput. Phys..

[19]  Jaemin Shin,et al.  Numerical analysis of energy-minimizing wavelengths of equilibrium states for diblock copolymers , 2014 .

[20]  Noel J. Walkington,et al.  Digital Object Identifier (DOI) 10.1007/s002050100158 An Eulerian Description of Fluids Containing Visco-Elastic Particles , 2022 .

[21]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .

[22]  Francisco Guillén-González,et al.  On linear schemes for a Cahn-Hilliard diffuse interface model , 2013, J. Comput. Phys..

[23]  Tao Tang,et al.  Stability Analysis of Large Time-Stepping Methods for Epitaxial Growth Models , 2006, SIAM J. Numer. Anal..

[24]  L. Leibler Theory of Microphase Separation in Block Copolymers , 1980 .

[25]  Jun Li,et al.  Energy Stable Numerical Schemes for a Hydrodynamic Model of Nematic Liquid Crystals , 2016, SIAM J. Sci. Comput..

[26]  Jie Shen,et al.  Modeling and simulations of drop pinch-off from liquid crystal filaments and the leaky liquid crystal faucet immersed in viscous fluids , 2013, J. Comput. Phys..

[27]  G. Fredrickson Surface ordering phenomena in block copolymer melts , 1987 .

[28]  Steven M. Wise,et al.  A MIXED DISCONTINUOUS GALERKIN, CONVEX SPLITTING SCHEME FOR A MODIFIED CAHN-HILLIARD EQUATION AND AN EFFICIENT NONLINEAR MULTIGRID SOLVER , 2013 .

[29]  Xiaofeng Yang,et al.  Numerical Approximations for Allen-Cahn Type Phase Field Model of Two-Phase Incompressible Fluids with Moving Contact Lines , 2017 .

[30]  P. Gennes Dynamics of fluctuations and spinodal decomposition in polymer blends , 1980 .

[31]  F. Bates,et al.  Complex Phase Behavior of Polyisoprene-Polystyrene Diblock Copolymers Near the Order-Disorder Transition , 1994 .

[32]  Jie Shen,et al.  A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids , 2016, J. Comput. Phys..

[33]  Jie Shen,et al.  Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  Xiaofeng Yang,et al.  Mass and Volume Conservation in Phase Field Models for Binary Fluids , 2013 .

[35]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[36]  Xiang-fa Wu,et al.  Phase-field modeling of the formation of lamellar nanostructures in diblock copolymer thin films under inplanar electric fields. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Jie Shen,et al.  Decoupled Energy Stable Schemes for Phase-Field Models of Two-Phase Complex Fluids , 2014, SIAM J. Sci. Comput..

[38]  Ross Ingram,et al.  A new linearly extrapolated Crank-Nicolson time-stepping scheme for the Navier-Stokes equations , 2013, Math. Comput..

[39]  A. Böker,et al.  Large scale alignment of a lamellar block copolymer thin film via electric fields: a time-resolved SFM study. , 2006, Soft matter.

[40]  Xiaofeng Yang,et al.  A novel linear second order unconditionally energy stable scheme for a hydrodynamic Q-tensor model of liquid crystals , 2017 .

[41]  Franck Boyer,et al.  Numerical schemes for a three component Cahn-Hilliard model , 2011 .

[42]  S. Brazovskii Phase transition of an isotropic system to a nonuniform state , 1975 .

[43]  Lili Ju,et al.  Linear and unconditionally energy stable schemes for the binary fluid–surfactant phase field model , 2017, 1701.07446.

[44]  Jie Shen,et al.  An efficient moving mesh spectral method for the phase-field model of two-phase flows , 2009, J. Comput. Phys..

[45]  Xiaofeng Yang,et al.  Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach , 2017 .

[46]  J. Kan A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .

[47]  Jie Shen,et al.  Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method , 2006, J. Comput. Phys..

[48]  Jie Shen,et al.  A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method , 2003 .

[49]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .

[50]  Jie Shen,et al.  Decoupled Energy Stable Schemes for a Phase-Field Model of Two-Phase Incompressible Flows with Variable Density , 2014, Journal of Scientific Computing.

[51]  László Gránásy,et al.  Advanced operator splitting-based semi-implicit spectral method to solve the binary phase-field crystal equations with variable coefficients , 2009, J. Comput. Phys..

[52]  X. Ren,et al.  On the Derivation of a Density Functional Theory for Microphase Separation of Diblock Copolymers , 2003 .

[53]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[54]  Jie Shen,et al.  Decoupled, Energy Stable Schemes for Phase-Field Models of Two-Phase Incompressible Flows , 2015, SIAM J. Numer. Anal..

[55]  Jia Zhao,et al.  Decoupled Energy Stable Schemes for a Phase Field Model of Three-Phase Incompressible Viscous Fluid Flow , 2016, Journal of Scientific Computing.

[56]  Jie Shen,et al.  A Phase-Field Model and Its Numerical Approximation for Two-Phase Incompressible Flows with Different Densities and Viscosities , 2010, SIAM J. Sci. Comput..

[57]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[58]  Daozhi Han,et al.  Numerical Analysis of Second Order, Fully Discrete Energy Stable Schemes for Phase Field Models of Two-Phase Incompressible Flows , 2017, J. Sci. Comput..

[59]  Jie Shen,et al.  On error estimates of the projection methods for the Navier-Stokes equations: Second-order schemes , 1996, Math. Comput..

[60]  B. Ocko,et al.  Electric Field Induced Sphere-to-Cylinder Transition in Diblock Copolymer Thin Films , 2004 .

[61]  Xiaofeng Yang,et al.  Decoupled energy stable schemes for phase-field vesicle membrane model , 2015, J. Comput. Phys..

[62]  Jie Shen,et al.  Error analysis of fully discrete velocity-correction methods for incompressible flows , 2008, Math. Comput..

[63]  Mark A. Peletier,et al.  On the Phase Diagram for Microphase Separation of Diblock Copolymers: An Approach via a Nonlocal Cahn--Hilliard Functional , 2009, SIAM J. Appl. Math..

[64]  A. Mayes,et al.  Block copolymer thin films : Physics and applications , 2001 .

[65]  K. Binder Collective diffusion, nucleation, and spinodal decomposition in polymer mixtures , 1983 .