Amplifier similaritons in a dispersion-mapped fiber laser [Invited]

Amplifier similaritons are generated in a dispersion-mapped fiber laser. Output pulse parameters are nearly independent of the net group velocity dispersion (GVD) owing to the strong local nonlinear attraction in the gain fiber, which dictates the pulse evolution. This constitutes a stable mode-locking regime that is capable of generating sub-100-fs pulses over a broad range of anomalous and normal GVD. These features are consistent with numerical simulations.

[1]  A. Peacock,et al.  Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients. , 2003, Physical review letters.

[2]  F. Wise,et al.  Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser. , 2009, Optics letters.

[3]  Masataka Nakazawa,et al.  Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion. , 2004, Optics letters.

[4]  Cesar Jauregui,et al.  High average and peak power femtosecond large-pitch photonic-crystal-fiber laser. , 2011, Optics letters.

[5]  S. Wabnitz,et al.  Strong spectral filtering for a mode-locked similariton fiber laser. , 2010, Optics letters.

[6]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[7]  Frank W. Wise,et al.  Dissipative solitons in normal-dispersion fiber lasers , 2008 .

[8]  Guy Millot,et al.  Asymptotic characteristics of parabolic similariton pulses in optical fiber amplifiers. , 2004, Optics letters.

[9]  Anna C. Peacock,et al.  Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers , 2002 .

[10]  Andy Chong,et al.  Self-similar pulse evolution in an all-normal-dispersion laser. , 2010, Physical review. A, Atomic, molecular, and optical physics.

[11]  J. Harvey,et al.  Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers. , 2000, Optics letters.

[12]  Andy Chong,et al.  All-normal-dispersion femtosecond fiber laser. , 2006, Optics express.

[13]  Frank W. Wise,et al.  Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment , 2011, Optics express.

[14]  Johan Nilsson,et al.  Efficient femtosecond pulse generation using a parabolic amplifier combined with a pulse compressor. II. Finite gain bandwidth effect , 2006 .

[15]  H. Haus,et al.  77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. , 1993, Optics letters.

[16]  Magnus Karlsson,et al.  Wave-breaking-free pulses in nonlinear-optical fibers , 1993 .

[17]  Cyril Billet,et al.  Experimental generation of parabolic pulses via Raman amplification in optical fiber. , 2003, Optics express.

[18]  Yohei Kobayashi,et al.  Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb. , 2011, Optics letters.

[19]  Jens Limpert,et al.  High-power femtosecond Yb-doped fiber amplifier. , 2002, Optics express.

[20]  Ching-Yuan Chien,et al.  Generation of sub-50 fs pulses from a high-power Yb-doped fiber amplifier. , 2009, Optics letters.

[21]  John D. Harvey,et al.  Experimental realisation of a mode-locked parabolic Raman fiber oscillator , 2010 .

[22]  F. Ömer Ilday,et al.  Soliton–similariton fibre laser , 2010 .

[23]  F. Wise,et al.  Self-similar evolution of parabolic pulses in a laser. , 2004, Physical review letters.

[24]  M Hanna,et al.  Generation of 63 fs 4.1 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit. , 2007, Optics letters.

[25]  B C Thomsen,et al.  Self-similar propagation and amplification of parabolic pulses in optical fibers. , 2000, Physical review letters.

[26]  M. Nakazawa,et al.  Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers. , 1996, Optics letters.

[27]  Guy Millot,et al.  Parabolic pulse generation with active or passive dispersion decreasing optical fibers. , 2007, Optics express.