Electromechanical stability of electro-active silicone filled with high permittivity particles undergoing large deformation

In this paper, an expression for the permittivity of electro-active silicone undergoing large deformation with high permittivity particles filled uniformly has been proposed. Two expressions are proposed for the permittivity, one based on experimental tests and the other based on the theory of composite material. By applying the thermodynamic model incorporating linear dielectric permittivity and nonlinear hyperelastic performance, the mechanical performance and electromechanical stability of the coupling system constituted by silicone filled with PMN–PT have been studied. The results show that the critical electric field decreases, namely the stability performance of the system declines when the content of PMN–PT c(v) increases and the electrostrictive coefficients increase. The results are beneficial for us to understand deeply the influence of the filled particle on the stability performance of silicone and to guide the design and manufacture of actuators and sensors based on dielectric elastomers.

[1]  H. M. Wang,et al.  Dynamic solution of a multilayered orthotropic piezoelectric hollow cylinder for axisymmetric plane strain problems , 2005 .

[2]  Z. Suo,et al.  Large deformation and electromechanical instability of a dielectric elastomer tube actuator , 2010 .

[3]  Z. Suo,et al.  Method to analyze programmable deformation of dielectric elastomer layers , 2008 .

[4]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.

[5]  Zhigang Suo,et al.  On designing dielectric elastomer actuators , 2008 .

[6]  Liang Shi,et al.  Analysis of the Novel Strain Responsive Actuators of Silicone Dielectric Elastomer , 2008 .

[7]  Z. Suo,et al.  Snap-through Expansion of a Gas Bubble in an Elastomer , 2011 .

[8]  Z. Suo,et al.  Propagation of instability in dielectric elastomers , 2008 .

[9]  Z. Suo,et al.  A nonlinear field theory of deformable dielectrics , 2008 .

[10]  Z. Suo,et al.  Theory of dielectric elastomers capable of giant deformation of actuation. , 2010, Physical review letters.

[11]  Yanju Liu,et al.  Electromechanical stability of dielectric elastomer , 2009 .

[12]  Jinsong Leng,et al.  Comment on “Method to analyze electromechanical stability of dielectric elastomers”[Appl. Phys. Lett. 91, 061921 (2007)] , 2008 .

[13]  Z. Suo,et al.  Method to analyze electromechanical stability of dielectric elastomers , 2007 .

[14]  Jinsong Leng,et al.  Erratum: “Electromechanical stability of dielectric elastomer” [Appl. Phys. Lett. 94, 211901 (2009)] , 2009 .

[15]  Zhigang Suo,et al.  Dielectric Elastomer Generators: How Much Energy Can Be Converted? , 2011, IEEE/ASME Transactions on Mechatronics.

[16]  Zhigang Suo,et al.  Maximal energy that can be converted by a dielectric elastomer generator , 2009 .

[17]  Evaristo Riande,et al.  On electromechanical stability of dielectric elastomers , 2008 .

[18]  James K. Knowles,et al.  The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids , 1977 .

[19]  Federico Carpi,et al.  Perspectives for new dielectric elastomers with improved electromechanical actuation performance: composites versus blends , 2010 .

[20]  Zhigang Suo,et al.  Electrostriction in elastic dielectrics undergoing large deformation , 2008 .

[21]  Zhigang Suo,et al.  Electromechanical hysteresis and coexistent states in dielectric elastomers , 2007 .

[22]  R. Pelrine,et al.  Actuation Response of Polyacrylate Dielectric Elastomers , 2003 .

[23]  Jinsong Leng,et al.  Analysis and manufacture of an energy harvester based on a Mooney-Rivlin–type dielectric elastomer , 2010 .

[24]  Zhigang Suo,et al.  Dielectric elastomers of interpenetrating networks , 2009 .

[25]  Zhigang Suo,et al.  Electromechanical instability in semicrystalline polymers , 2009 .

[26]  Andrew N. Norris,et al.  Comment on “Method to analyze electromechanical stability of dielectric elastomers” [Appl. Phys. Lett.91, 061921 (2007)] , 2007, 0709.2497.

[27]  Jinsong Leng,et al.  Electromechanical stability of a Mooney–Rivlin‐type dielectric elastomer with nonlinear variable permittivity , 2010 .

[28]  C. Keplinger,et al.  Röntgen’s electrode-free elastomer actuators without electromechanical pull-in instability , 2010, Proceedings of the National Academy of Sciences.

[29]  Jinsong Leng,et al.  Dielectric elastomer film actuators: characterization, experiment and analysis , 2009 .

[30]  Z. Suo,et al.  Dielectric elastomer membranes undergoing inhomogeneous deformation , 2009 .

[31]  Zhigang Suo,et al.  Formation of creases on the surfaces of elastomers and gels , 2009 .

[32]  H. Ding,et al.  Spherically symmetric transient responses of functionally graded magneto-electro-elastic hollow sphere , 2006 .

[33]  Jinsong Leng,et al.  An investigation on electromechanical stability of dielectric elastomers undergoing large deformation , 2009 .

[34]  Jinsong Leng,et al.  Stability analysis of dielectric elastomer film actuator , 2009 .

[35]  S. Dubowsky,et al.  Large-scale failure modes of dielectric elastomer actuators , 2006 .

[36]  Zhigang Suo,et al.  Nonlinear oscillation of a dielectric elastomer balloon , 2010 .

[37]  Zhigang Suo,et al.  Resonant behavior of a membrane of a dielectric elastomer , 2010 .

[38]  D. Rossi,et al.  Dielectric constant enhancement in a silicone elastomer filled with lead magnesium niobate–lead titanate , 2007 .