Inhibition of interleukin-1 receptor-associated kinase-1 is a therapeutic strategy for acute myeloid leukemia subtypes

[1]  David R. Anderson,et al.  Discovery of Clinical Candidate 1-{[(2S,3S,4S)-3-Ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy}-7-methoxyisoquinoline-6-carboxamide (PF-06650833), a Potent, Selective Inhibitor of Interleukin-1 Receptor Associated Kinase 4 (IRAK4), by Fragment-Based Drug Design. , 2017, Journal of medicinal chemistry.

[2]  A. Mead,et al.  Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial. , 2017, The Lancet. Haematology.

[3]  R. Collins,et al.  Identification of Interleukin-1 by Functional Screening as a Key Mediator of Cellular Expansion and Disease Progression in Acute Myeloid Leukemia. , 2017, Cell reports.

[4]  Gang Chen,et al.  Oncotargets and Therapy Dovepress Dovepress Diagnostic and Prognostic Roles of Irak1 in Hepatocellular Carcinoma Tissues: an Analysis of Immunohistochemistry and Rna-sequencing Data from the Cancer Genome Atlas , 2022 .

[5]  Ashley R. Woodfin,et al.  Therapeutic Targeting of MLL Degradation Pathways in MLL-Rearranged Leukemia , 2017, Cell.

[6]  T. Holyoake,et al.  Inhibition of interleukin-1 signaling enhances elimination of tyrosine kinase inhibitor-treated CML stem cells. , 2016, Blood.

[7]  S. Verstovsek,et al.  Results of the Persist-2 Phase 3 Study of Pacritinib (PAC) Versus Best Available Therapy (BAT), Including Ruxolitinib (RUX), in Patients (pts) with Myelofibrosis (MF) and Platelet Counts <100,000/µl , 2016 .

[8]  M. Wong,et al.  FGF2 from Marrow Microenvironment Promotes Resistance to FLT3 Inhibitors in Acute Myeloid Leukemia. , 2016, Cancer research.

[9]  Haiching Ma,et al.  Comprehensive kinase profile of pacritinib, a nonmyelosuppressive Janus kinase 2 inhibitor , 2016, Journal of experimental pharmacology.

[10]  H. Ditzel,et al.  IRAK1 is a therapeutic target that drives breast cancer metastasis and resistance to paclitaxel , 2015, Nature Communications.

[11]  B. Aronow,et al.  IRAK1 is a novel DEK transcriptional target and is essential for head and neck cancer cell survival , 2015, Oncotarget.

[12]  H. Dombret,et al.  Targeting IRAK1 in T-Cell acute lymphoblastic leukemia , 2015, Oncotarget.

[13]  D. Tenen,et al.  Treatment of chronic myelogenous leukemia by blocking cytokine alterations found in normal stem and progenitor cells. , 2015, Cancer cell.

[14]  D. Dittmer,et al.  Correction: "Interleukin 1 receptor-associated kinase 1 (IRAK1) mutation is a common, essential driver for Kaposi sarcoma herpesvirus lymphoma," (Proc Natl Acad Sci USA (2014) 111, 44 (E4762-E4768) DOI: 10.1073/pnas.1405423111) , 2015 .

[15]  L. To,et al.  Results of a phase 2 study of pacritinib (SB1518), a JAK2/JAK2(V617F) inhibitor, in patients with myelofibrosis. , 2015, Blood.

[16]  C. Hourigan,et al.  Current Approaches in the Treatment of Relapsed and Refractory Acute Myeloid Leukemia , 2015, Journal of clinical medicine.

[17]  R. Gartenhaus,et al.  Inhibition of IRAK1/4 sensitizes T cell acute lymphoblastic leukemia to chemotherapies. , 2015, The Journal of clinical investigation.

[18]  Bin Zhang,et al.  PhosphoSitePlus, 2014: mutations, PTMs and recalibrations , 2014, Nucleic Acids Res..

[19]  D. Starczynowski,et al.  IRAK signalling in cancer , 2014, British Journal of Cancer.

[20]  C. Récher,et al.  Sorafenib plus all‐trans retinoic acid for AML patients with FLT3‐ITD and NPM1 mutations , 2014, European journal of haematology.

[21]  James M. Roberts,et al.  BCR-ABL1 promotes leukemia by converting p27 into a cytoplasmic oncoprotein. , 2014, Blood.

[22]  D. Dittmer,et al.  Interleukin 1 receptor-associated kinase 1 (IRAK1) mutation is a common, essential driver for Kaposi sarcoma herpesvirus lymphoma , 2014, Proceedings of the National Academy of Sciences.

[23]  E. Davila,et al.  IL-1 Receptor-Associated Kinase Signaling and Its Role in Inflammation, Cancer Progression, and Therapy Resistance , 2014, Front. Immunol..

[24]  D. Starczynowski,et al.  IRAK1: oncotarget in MDS and AML , 2014, Oncotarget.

[25]  F. Giles,et al.  The role of inflammation in leukaemia. , 2014, Advances in experimental medicine and biology.

[26]  D. Starczynowski,et al.  Differential IRAK signaling in hematologic malignancies. , 2013, Experimental hematology.

[27]  H. Kantarjian,et al.  Phase I study of quizartinib administered daily to patients with relapsed or refractory acute myeloid leukemia irrespective of FMS-like tyrosine kinase 3-internal tandem duplication status. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[28]  N. Gray,et al.  A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenström macroglobulinemia. , 2013, Blood.

[29]  A. Jemal,et al.  Outcome of older patients with acute myeloid leukemia , 2013, Cancer.

[30]  Lesley A. Mathews,et al.  Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome. , 2013, Cancer cell.

[31]  Benjamin J. Raphael,et al.  Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. , 2013, The New England journal of medicine.

[32]  N. Gutiérrez,et al.  MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenström’s macroglobulinemia , 2013, Leukemia.

[33]  S. Ben-Neriah,et al.  Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS. , 2012, Blood.

[34]  Anders Poulsen,et al.  Structure-based design of oxygen-linked macrocyclic kinase inhibitors: discovery of SB1518 and SB1578, potent inhibitors of Janus kinase 2 (JAK2) and Fms-like tyrosine kinase-3 (FLT3) , 2012, Journal of Computer-Aided Molecular Design.

[35]  A. Poulsen,et al.  SB1518, a novel macrocyclic pyrimidine-based JAK2 inhibitor for the treatment of myeloid and lymphoid malignancies , 2011, Leukemia.

[36]  J. Wood,et al.  Pacritinib (SB1518), a JAK2/FLT3 inhibitor for the treatment of acute myeloid leukemia , 2011, Blood cancer journal.

[37]  Theonie Anastassiadis,et al.  Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity , 2011, Nature biotechnology.

[38]  Anders Poulsen,et al.  Discovery of the macrocycle 11-(2-pyrrolidin-1-yl-ethoxy)-14,19-dioxa-5,7,26-triaza-tetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25),2(26),3,5,8,10,12(27),16,21,23-decaene (SB1518), a potent Janus kinase 2/fms-like tyrosine kinase-3 (JAK2/FLT3) inhibitor for the treatment of myelofibrosis and lympho , 2011, Journal of medicinal chemistry.

[39]  Joseph M. Connors,et al.  Oncogenically active MYD88 mutations in human lymphoma , 2011, Nature.

[40]  C. Hansen,et al.  MicroRNA-146a disrupts hematopoietic differentiation and survival. , 2011, Experimental hematology.

[41]  W. Vainchenker,et al.  FLT3-mediated p38-MAPK activation participates in the control of megakaryopoiesis in primary myelofibrosis. , 2007, Cancer research.

[42]  R. Arceci Chronic Immune Stimulation Might Act As a Trigger for the Development of Acute Myeloid Leukemia or Myelodysplastic Syndromes , 2011 .

[43]  Y. Lo,et al.  Helical assembly in the MyD88:IRAK4:IRAK2 complex in TLR/IL-1R signaling , 2010, Nature.

[44]  Jane Yates,et al.  TLR8-dependent TNF-(alpha) overexpression in Fanconi anemia group C cells. , 2009, Blood.

[45]  A. Cuenda,et al.  p38 MAP-kinases pathway regulation, function and role in human diseases. , 2007, Biochimica et biophysica acta.

[46]  Chunaram Choudhary,et al.  Activation mechanisms of STAT5 by oncogenic Flt3-ITD. , 2006, Blood.

[47]  Bob Löwenberg,et al.  Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. , 2005, Blood.

[48]  S. Gygi,et al.  An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets , 2005, Nature Biotechnology.

[49]  C. Coban,et al.  Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-α induction , 2005, The Journal of experimental medicine.

[50]  P. Campbell,et al.  Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders , 2005, The Lancet.

[51]  D. Harrison,et al.  The JAK/STAT signaling pathway , 2004, Journal of Cell Science.

[52]  R. Gaynor,et al.  Role of the NF-kappaB pathway in the pathogenesis of human disease states. , 2001, Current molecular medicine.

[53]  E. Estey,et al.  Inhibition of acute myelogenous leukemia blast proliferation by interleukin-1 (IL-1) receptor antagonist and soluble IL-1 receptors. , 1992, Blood.

[54]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.