Higher temperature power electronics for larger-scale mechatronic integration

Higher temperature electronics is driving large development efforts regarding many issues, especially the objective of integration. The main targets for a higher level of integration come with the constraint of increased reliability. At converter level, these objectives face many challenges and 3 of them are discussed here with indication of the state of the art and results contributed by Ampere-lab.

[1]  C. Monteil,et al.  Techniques de l'Ingénieur , 1961 .

[2]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[3]  Thomas W. Eagar,et al.  Low Stress Die Attach by Low Temperature Transient Liquid Phase Bonding , 1992 .

[4]  K. T. Kornegay,et al.  High-temperature mixed-signal ICs using silicon carbide CMOS technology , 1998, 1998 Fourth International High Temperature Electronics Conference. HITEC (Cat. No.98EX145).

[5]  Kevin T. Kornegay,et al.  A silicon carbide CMOS intelligent gate driver circuit , 1998 .

[6]  Kevin T. Kornegay Submicron silicon carbide CMOS for smartpower applications , 1999, 11th International Symposium on Power Semiconductor Devices and ICs. ISPSD'99 Proceedings (Cat. No.99CH36312).

[7]  M. Shur,et al.  Properties of advanced semiconductor materials : GaN, AlN, InN, BN, SiC, SiGe , 2001 .

[8]  Wendy L. Sarney,et al.  Growth of GaN on SiC(0001) by Molecular Beam Epitaxy , 2001 .

[9]  David J. Perreault,et al.  The future of electronics in automobiles , 2001, Proceedings of the 13th International Symposium on Power Semiconductor Devices & ICs. IPSD '01 (IEEE Cat. No.01CH37216).

[10]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[11]  K.T. Kornegay,et al.  A nonvolatile semiconductor memory device in 6H-SiC for harsh environment applications , 2003, IEEE Electron Device Letters.

[12]  Patrick J. French,et al.  A CMOS compatible SiC accelerometer , 2003, Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498).

[13]  J. Cooper,et al.  Silicon carbide electronic devices and integrated circuits for extreme environments , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[14]  William W. Sheng,et al.  Power Electronic Modules: Design and Manufacture , 2004 .

[15]  Guofeng Bai,et al.  Low-temperature sintering of nanoscale silver paste for semiconductor device interconnection , 2005 .

[16]  B. Ray,et al.  High temperature operation of a dc-dc power converter utilizing SiC power devices , 2005, Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005..

[17]  H. Mantooth,et al.  Power Conversion With SiC Devices at Extremely High Ambient Temperatures , 2007, IEEE Transactions on Power Electronics.

[18]  Luc Burdet,et al.  Active magnetic bearing design and characterization for high temperature applications , 2006 .

[19]  Homer Alan Mantooth,et al.  A High-Temperature Multichip Power Module (MCPM) Inverter utilizing Silicon Carbide (SiC) and Silicon on Insulator (SOI) Electronics , 2006 .

[20]  F. Udrea,et al.  High performance cooling system for automotive inverters , 2007, 2007 European Conference on Power Electronics and Applications.

[21]  Christopher Blauth,et al.  Data, data, data… , 2007, International journal of clinical practice.

[22]  Bruce Ohme Deep Trek High Temperature Electronics Project , 2007 .

[23]  J. D. van Wyk,et al.  High-Temperature Operation of SiC Power Devices by Low-Temperature Sintered Silver Die-Attachment , 2007, IEEE Transactions on Advanced Packaging.

[24]  Yi Liu,et al.  Power Device Packaging Technologies for Extreme Environments , 2007, IEEE Transactions on Electronics Packaging Manufacturing.

[25]  Mounira Bouarroudj-Berkani,et al.  Étude de la fatigue thermo-mécanique de modules électroniques de puissance en ambiance de températures élevées pour des applications de traction de véhicules électriques et hybrides , 2008 .

[26]  S. Singh,et al.  Demonstration and Characterization of Bipolar Monolithic Integrated Circuits in 4H-SiC , 2008, IEEE Transactions on Electron Devices.

[27]  J.H. Zhao,et al.  Development of 4H-SiC LJFET-Based Power IC , 2008, IEEE Transactions on Electron Devices.

[28]  Liang-Yu Chen,et al.  Stable Electrical Operation of 6H–SiC JFETs and ICs for Thousands of Hours at 500 $^{\circ}\hbox{C}$ , 2008, IEEE Electron Device Letters.

[29]  Hirotaka Otake,et al.  Vertical GaN-Based Trench Gate Metal Oxide Semiconductor Field-Effect Transistors on GaN Bulk Substrates , 2008 .

[30]  B. Allard,et al.  Towards an airborne high temperature SiC inverter , 2008, 2008 IEEE Power Electronics Specialists Conference.

[31]  Zhihua Cai,et al.  InN nanowire based sensors , 2008, 2008 IEEE Sensors.

[32]  Bruno Allard,et al.  Normally-on devices and circuits, SiC and high temperature : using SiCJFETs in power converters , 2008 .

[33]  Liangchun Yu,et al.  Modeling and design of a monolithically integrated power converter on SiC , 2008 .

[34]  Ryszard Kisiel,et al.  Die-attachment solutions for SiC power devices , 2009, Microelectron. Reliab..

[35]  Yong Cai,et al.  Temperature dependence and thermal stability of planar-integrated enhancement/depletion-mode AlGan/GaN HEMTs and digital circuits , 2009 .

[36]  T. Paul Chow,et al.  GaN MOS Capacitors and FETs on Plasma-Etched GaN Surfaces , 2009 .

[37]  Tetsu Kachi,et al.  GaN Power Switching Devices for Automotive Applications , 2009 .

[38]  Hervé Morel,et al.  Caractérisation des non-linéarités dans les condensateurs céramiques haute température , 2010 .

[39]  Cyril Buttay,et al.  Effect of High Temperature Ageing on Active and Passive Power Devices , 2010 .

[40]  Takashi Mizutani,et al.  Fabrication of normally-off mode GaN and AlGaN/GaN MOSFETs with HfO2 gate insulator , 2010 .

[41]  Matthias Seelmann-Eggebert,et al.  Design and realization of GaN RF-devices and circuits from 1 to 30 GHz , 2010, International Journal of Microwave and Wireless Technologies.

[42]  Hervé Morel,et al.  Design of High Temperature EMI Input Filter for a 2 kW HVDC-fed Inverter , 2010 .

[43]  C. Gobl,et al.  Low temperature sinter technology die attachment for power electronic applications , 2010, 2010 6th International Conference on Integrated Power Electronics Systems.

[44]  Hiroshi Kambayashi,et al.  Over 100 A operation normally-off AlGaN/GaN hybrid MOS-HFET on Si substrate with high-breakdown voltage , 2010 .

[45]  A. T. Kalghatgi,et al.  Improved growth of GaN layers on ultra thin silicon nitride/Si (1 1 1) by RF-MBE , 2010 .

[46]  Craig Nies,et al.  A Comparison of Multilayer Ceramic Capacitor Technologies for High Temperature Applications , 2010 .

[47]  Dominique Tournier,et al.  Performance of commercial SOI driver in harsh conditions (up to 200°C) , 2010 .

[48]  Fanyu Meng,et al.  Direct observation of formation of threading dislocations from stacking faults in GaN layer grown on (0 0 0 1) sapphire , 2011 .