Computer Vision Workload Analysis: Case Study of Video Surveillance Systems

[1]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.

[2]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[3]  David C. Hogg,et al.  Learning the distribution of object trajectories for event recognition , 1996, Image Vis. Comput..

[4]  W. Leonhard,et al.  Vehicle control by computer vision , 1992, IEEE Trans. Ind. Electron..

[5]  Tomaso A. Poggio,et al.  Motion Field and Optical Flow: Qualitative Properties , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Qi Tian,et al.  Foreground object detection from videos containing complex background , 2003, MULTIMEDIA '03.

[7]  Tieniu Tan,et al.  Semantic interpretation of object activities in a surveillance system , 2002, Object recognition supported by user interaction for service robots.

[8]  Alex Mihailidis,et al.  The use of computer vision in an intelligent environment to support aging-in-place, safety, and independence in the home , 2004, IEEE Transactions on Information Technology in Biomedicine.

[9]  Takeo Kanade,et al.  A statistical method for 3D object detection applied to faces and cars , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[10]  Katja Nummiaro A Color-based Particle Filter , 2002 .

[11]  Z. Zivkovic Improved adaptive Gaussian mixture model for background subtraction , 2004, ICPR 2004.

[12]  Nicholas Ayache,et al.  Medical Image Analysis: Progress over Two Decades and the Challenges Ahead , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Andrea Giachetti,et al.  The use of optical flow for road navigation , 1998, IEEE Trans. Robotics Autom..

[14]  Massimo Bertozzi,et al.  Pedestrian detection for driver assistance using multiresolution infrared vision , 2004, IEEE Transactions on Vehicular Technology.

[15]  A. Hampapur,et al.  Smart video surveillance: exploring the concept of multiscale spatiotemporal tracking , 2005, IEEE Signal Processing Magazine.

[16]  Roland Wilson,et al.  MGMM: multiresolution Gaussian mixture models for computer vision , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[17]  Kiriakos N. Kutulakos,et al.  Calibration-Free Augmented Reality , 1998, IEEE Trans. Vis. Comput. Graph..

[18]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[19]  Sharath Pankanti,et al.  Appearance models for occlusion handling , 2006, Image Vis. Comput..

[20]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[21]  Cédric Demonceaux,et al.  Obstacle detection in a road scene based on motion analysis , 2004, IEEE Transactions on Vehicular Technology.

[22]  Ryohei Nakatsu,et al.  Virtual Metamorphosis , 1999, IEEE Multim..

[23]  K. Fujimura,et al.  Driver face tracking using Gaussian mixture model(GMM) , 2003, IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683).

[24]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[25]  Roger Mohr,et al.  Mixture densities for video objects recognition , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[26]  Paul A. Viola,et al.  Detecting Pedestrians Using Patterns of Motion and Appearance , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[27]  P. Djurić,et al.  Particle filtering , 2003, IEEE Signal Process. Mag..

[28]  Andrew J. Bulpitt,et al.  Learning spatio-temporal patterns for predicting object behaviour , 2000, Image Vis. Comput..

[29]  Michael Harville,et al.  Foreground segmentation using adaptive mixture models in color and depth , 2001, Proceedings IEEE Workshop on Detection and Recognition of Events in Video.