Non-Oxide Semiconductor Nanostructures

[1]  J. Turner,et al.  III-V nitride epilayers for photoelectrochemical water splitting: GaPN and GaAsPN. , 2006, The journal of physical chemistry. B.

[2]  Yiwen Tang,et al.  Synthesis and photoelectrochemical behavior of nanocrystalline CdS film electrodes , 2006 .

[3]  K. Domen,et al.  Characterization of Rh-Cr mixed-oxide nanoparticles dispersed on (Ga(1-x)Zn(x))(N(1-x)Ox) as a cocatalyst for visible-light-driven overall water splitting. , 2006, The journal of physical chemistry. B.

[4]  K. Domen,et al.  Efficient overall water splitting under visible-light irradiation on (Ga(1-x)Zn(x))(N(1-x)O(x)) dispersed with Rh-Cr mixed-oxide nanoparticles: Effect of reaction conditions on photocatalytic activity. , 2006, The journal of physical chemistry. B.

[5]  Balasubramanian Viswanathan,et al.  Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting , 2006 .

[6]  B. Zhang,et al.  Sensitization of CdSe Nanostructured Electrodes by Tetrasulfonated Copper Phthalocyanine , 2006 .

[7]  K. Domen,et al.  Photocatalyst releasing hydrogen from water , 2006, Nature.

[8]  Zhi-Gang Yu,et al.  Core-shell nanorods for efficient photoelectrochemical hydrogen production. , 2005 .

[9]  Y. Nosaka,et al.  Fabrication of CdS photoelectrodes coated with titania nanosheets for water splitting with visible light , 2005 .

[10]  K. Fujii,et al.  Photoelectrochemical Properties of InGaN for H2 Generation from Aqueous Water , 2005 .

[11]  P. J. Sebastian,et al.  Photoelectrochemical characterization of CIGS thin films for hydrogen production , 2005 .

[12]  V. Pokhodenko,et al.  Quantum Size Effects in Semiconductor Photocatalysis , 2005 .

[13]  A. Kudo,et al.  Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2 solid-solution photocatalyst. , 2005, Angewandte Chemie.

[14]  Naoki Kobayashi,et al.  Hydrogen Evolution from p-GaN Cathode in Water under UV Light Irradiation , 2005 .

[15]  V. Ursaki,et al.  Use of porous GaAs electrodes in photoelectrochemical cells , 2005 .

[16]  Kazuhiko Maeda,et al.  GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. , 2005, Journal of the American Chemical Society.

[17]  Kazuhiro Ohkawa,et al.  Hydrogen Gas Generation by Splitting Aqueous Water Using n-Type GaN Photoelectrode with Anodic Oxidation , 2005 .

[18]  A. Kudo,et al.  Photocatalytic H2 evolution under visible-light irradiation over band-structure-controlled (CuIn)xZn2(1-x)S2 solid solutions. , 2005, The journal of physical chemistry. B.

[19]  Yoko Yamada,et al.  RuO2-Loaded β-Ge3N4 as a Non-Oxide Photocatalyst for Overall Water Splitting , 2005 .

[20]  R. Ellingson,et al.  Electron and hole transfer from indium phosphide quantum dots. , 2005, The journal of physical chemistry. B.

[21]  C. Bhattacharya,et al.  Studies on anodic corrosion of the electroplated CdSe in aqueous and non-aqueous media for photoelectrochemical cells and characterization of the electrode/electrolyte interface , 2005 .

[22]  J. Shelnutt,et al.  Self-metallization of photocatalytic porphyrin nanotubes. , 2004, Journal of the American Chemical Society.

[23]  K. Ebina,et al.  Photophysical and photoelectrochemical characteristics of multilayers of CdS nanoclusters. , 2004, Faraday discussions.

[24]  Hideki Kato,et al.  Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. , 2004, Journal of the American Chemical Society.

[25]  Kwang‐Je Kim,et al.  Photo-production of hydrogen over the CdS–TiO2 nano-composite particulate films treated with TiCl4 , 2004 .

[26]  T. Ma,et al.  Photocatalytic H2 evolution under visible light irradiation on CdS/ETS-4 composite , 2004 .

[27]  J. Turner,et al.  Preparation and characterization of Cu(In,Ga)(Se,S)2 thin films from electrodeposited precursors for hydrogen production , 2004 .

[28]  I. Willner,et al.  Efficient generation of photocurrents by using CdS/carbon nanotube assemblies on electrodes. , 2004, Angewandte Chemie.

[29]  K. Domen,et al.  Unusual enhancement of H2 evolution by Ru on TaON photocatalyst under visible light irradiation. , 2003, Chemical communications.

[30]  H. Tributsch,et al.  Imaging of catalytic activity of platinum on p-InP for photocathodical hydrogen evolution , 2003 .

[31]  A. Kasuya,et al.  Optimization of a two-compartment photoelectrochemical cell for solar hydrogen production , 2003 .

[32]  Can Li,et al.  Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method. , 2003, Chemical communications.

[33]  J. Turner,et al.  Band-Edge Potentials of n-Type and p-Type GaN , 2003 .

[34]  G. Guan,et al.  LaMnO3/CdS nanocomposite: A new photocatalyst for hydrogen production from water under visible light irradiation , 2003 .

[35]  G. C. De,et al.  Immobilisation of CdS, ZnS and mixed ZnS–CdS on filter paper: Effect of hydrogen production from alkaline Na2S/Na2S2O3 solution , 2003 .

[36]  A. Kudo,et al.  H2 evolution from aqueous sulfite solutions under visible-light irradiation over Pb and halogen-codoped ZnS photocatalysts , 2003 .

[37]  M. Rincón,et al.  Nanostructured vs. polycrystalline CdS/ZnS thin films for photocatalytic applications , 2003 .

[38]  Akio Ishikawa,et al.  Conduction and Valence Band Positions of Ta2O5, TaON, and Ta3N5 by UPS and Electrochemical Methods , 2003 .

[39]  Y. Nakato,et al.  Minority Carrier Accumulation and Interfacial Kinetics in Nanosized Pt-Dotted Silicon Electrolyte Interfaces Studied by Microwave Techniques , 2002 .

[40]  A. Kudo,et al.  AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation. , 2002, Chemical communications.

[41]  Tsuyoshi Takata,et al.  An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ≤ 500 nm) , 2002 .

[42]  Akio Ishikawa,et al.  Ta3N5 as a Novel Visible Light-Driven Photocatalyst (λ<600 nm) , 2002 .

[43]  Tsuyoshi Takata,et al.  Photoreactions on LaTiO2N under Visible Light Irradiation , 2002 .

[44]  K. Schulte,et al.  Combined photoelectrochemical conditioning and photoelectron spectroscopy analysis of InP photocathodes. I. The modification procedure , 2002 .

[45]  Arthur B. Ellis,et al.  Optical to electrical energy conversion. Characterization of cadmium sulfide and cadmium selenide based photoelectrochemical cells , 2002 .

[46]  J. Turner,et al.  Photoelectrochemical Characterization of Surface Modified CdTe for Hydrogen Production , 2002 .

[47]  A. Koca,et al.  Photocatalytic hydrogen production by direct sun light from sulfide/sulfite solution , 2002 .

[48]  J. Turner,et al.  Band gaps and lattice parameters of 0.9 μm thick InxGa1−xN films for 0⩽x⩽0.140 , 2002 .

[49]  P. Kamat,et al.  Interparticle electron transfer between size-quantized CdS and TiO2 semiconductor nanoclustersDedicated to Professor Frank Wilkinson on the occasion of his retirement. , 2002 .

[50]  K. Domen,et al.  Ta3N5 as a Novel Visible Light-Driven Photocatalyst (.LAMBDA.<600 nm). , 2002 .

[51]  A. Bard,et al.  Electrochemistry of CdS nanoparticles: a correlation between optical and electrochemical band gaps. , 2001, Journal of the American Chemical Society.

[52]  Z. Deng,et al.  Low-temperature elemental-direct-reaction route to II-VI semiconductor nanocrystalline ZnSe and CdSe. , 2001, Inorganic chemistry.

[53]  D. Riley,et al.  Potential modulated absorbance spectroscopy: an investigation of the potential distribution at a CdS nanoparticle modified electrode , 2001 .

[54]  R. Fan,et al.  Low-Temperature Hydrothermal Synthesis of Transition Metal Dichalcogenides , 2001 .

[55]  M. Rajamathi,et al.  A solvothermal route to capped CdSe nanoparticles , 2001 .

[56]  Y. Qian,et al.  A mild solvothermal route to chalcopyrite quaternary semiconductor CuIn(SexS1 − x)2 nanocrystallites , 2001 .

[57]  Masahiro Seo,et al.  Formation and corrosion of InP/In contacts in hydrochloric acid , 2000 .

[58]  S. Hickey,et al.  Photoelectrochemical Studies of CdS Nanoparticle Modified Electrodes: Absorption and Photocurrent Investigations , 2000 .

[59]  S. Kuwabata,et al.  Photoelectrochemical properties of size-quantized semiconductor photoelectrodes prepared by two-dimensional cross-linking of monodisperse CdS nanoparticles , 2000 .

[60]  J. Turner,et al.  Suppression of Band Edge Migration at the p-GaInP2/H2O Interface under Illumination via Catalysis , 2000 .

[61]  W. Gomes,et al.  Electrochemistry and Photoetching of n‐GaN , 2000 .

[62]  Y. Qian,et al.  Synthesis of nanocrystalline CuMS2 (M = In or Ga) through a solvothermal process. , 2000, Inorganic chemistry.

[63]  Akihiko Kudo,et al.  Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst , 2000 .

[64]  John C. Roberts,et al.  Optical band gap dependence on composition and thickness of InxGa1−xN (0 , 1999 .

[65]  Y. Qian Solvothermal Synthesis of Nanocrystalline III–V Semiconductors , 1999 .

[66]  M. M. Khader,et al.  Comparative study between the photoelectrochemical behaviors of metal-loaded n- and p-GaAs , 1999 .

[67]  S. Upadhyay,et al.  Activity of Cadmium Sulfide Photocatalysts for Hydrogen Production from Water: Role of Support , 1999 .

[68]  D. Riley,et al.  Photoelectrochemical Studies of CdS Nanoparticle-Modified Electrodes , 1999 .

[69]  Akihiko Kudo,et al.  Photocatalytic H2 evolution under visible light irradiation on Zn1-xCuxS solid solution , 1999 .

[70]  J.-N. Chazalviel,et al.  The Mechanism of Hydrogen Gas Evolution on GaAs Cathodes Elucidated by In Situ Infrared Spectroscopy , 1999 .

[71]  M. Nishizawa,et al.  Preparation and Photoelectrochemical Properties of Two-Dimensionally Organized CdS Nanoparticle Thin Films , 1999 .

[72]  H. Yoneyama,et al.  Photoelectrochemical Characterization of Nearly Monodisperse CdS Nanoparticles−Immobilized Gold Electrodes , 1999 .

[73]  M. Nishizawa,et al.  Photoelectrochemical Properties of Size-Quantized CdS Thin Films Prepared by an Electrochemical Method , 1998 .

[74]  L. Arriaga,et al.  Preparation and characterization of (Zn,Cd)S photoelectrodes for hydrogen production , 1998 .

[75]  Isamu Akasaki,et al.  Optical band gap in Ga1−xInxN (0 , 1998 .

[76]  M. Subrahmanyam,et al.  Enhanced photocatalytic H2 production over Cd$z.sbnd;ZnS supported on super basic oxides*1 , 1998 .

[77]  T. Mallouk,et al.  Layer-by-Layer Assembly of Thin Film Zener Diodes from Conducting Polymers and CdSe Nanoparticles , 1998 .

[78]  P. Sebastián,et al.  Characterization of screen printed Ti/CdS and Ti/CdSe photoelectrodes for photoelectrochemical hydrogen production , 1998 .

[79]  Peter Bogdanoff,et al.  A New Inlet System for Differential Electrochemical Mass Spectroscopy Applied to the Photocorrosion of p‐InP(111) Single Crystals , 1998 .

[80]  A. Bard,et al.  PHOTOELECTROCHEMISTRY OF FILMS OF QUANTUM SIZE LEAD SULFIDE PARTICLES INCORPORATED IN SELF-ASSEMBLED MONOLAYERS ON GOLD , 1997 .

[81]  G. Hodes,et al.  Size Quantization in Electrodeposited CdTe Nanocrystalline Films , 1997 .

[82]  D. Meissner,et al.  Particle Size and Surface Chemistry in Photoelectrochemical Reactions at Semiconductor Particles , 1997 .

[83]  G. Richmond,et al.  Photocorrosion of n-GaAs and Passivation by Na2S: A Comparison of the (100), (110), and (111)B Faces , 1997 .

[84]  Ilesanmi Adesida,et al.  Photoelectrochemical etching of GaN , 1997 .

[85]  K. Yoon,et al.  Photoeffects in WO3/GaAs electrode , 1996 .

[86]  G. Bilger,et al.  Hydrogen evolution on platinum-coated p-silicon photocathodes , 1996 .

[87]  M. M. Khader,et al.  Catalytic effects for hydrogen photogeneration due to metallic deposition on P-GaAs , 1996 .

[88]  Shyam S. Kocha,et al.  Impedance analysis of surface modified Ga0.5In0.5P—aqueous electrolyte interface , 1996 .

[89]  D. Mandal,et al.  Photoelectrosynthesis of dihydrogen via water-splitting using Sx2− (x = 1, 2, 3 …) as an anolyte: A first step for a viable solar rechargeable battery , 1996 .

[90]  Uri Banin,et al.  Synthesis of Size-Selected, Surface-Passivated InP Nanocrystals , 1996 .

[91]  J. Fendler,et al.  Langmuir−Blodgett Film Formation from Fluorescence-Activated, Surfactant-Capped, Size-Selected CdS Nanoparticles Spread on Water Surfaces , 1996 .

[92]  M. M. Khader Surface Arsenic Enrichment of n-GaAs Photoanodes in Concentrated Acidic Chloride Solutions , 1996 .

[93]  Gobinda Chandra De,et al.  Effect of n-Si on the photocatalytic production of hydrogen by Pt-loaded CdS and CdS/ZnS catalyst , 1996 .

[94]  D. Arent,et al.  Electrochemical Investigation of the Gallium Nitride‐Aqueous Electrolyte Interface , 1995 .

[95]  A. Albu-Yaron,et al.  Quantum Size Effects in Chemically Deposited, Nanocrystalline Lead Selenide Films , 1995 .

[96]  A. Bard,et al.  Scanning Tunneling Microscopy, Tunneling Spectroscopy, and Photoelectrochemistry of a Film of Q-CdS Particles Incorporated in a Self-Assembled Monolayer on a Gold Surface , 1995 .

[97]  M. Okamoto,et al.  Pressure and temperature dependences of the rate constant for S1-T2 intersystem crossing of anthracene compounds in solution , 1995 .

[98]  Y. Nakato,et al.  Surface states in the band-gap for Pt-deposited p-InP photoelectrochemical cells , 1994 .

[99]  R. L. Wells,et al.  A Straightforward, New Method for the Synthesis of Nanocrystalline GaAs and GaP , 1994 .

[100]  J. Zhang,et al.  Femtosecond studies of interparticle electron transfer in a coupled CdS–TiO2 colloidal system , 1994 .

[101]  S. Tolbert,et al.  Size Dependence of a First Order Solid-Solid Phase Transition: The Wurtzite to Rock Salt Transformation in CdSe Nanocrystals , 1994, Science.

[102]  S. Kocha,et al.  Study of the Schottky barrier and determination of the energetic positions of band edges at the n-and p-type gallium indium phosphide electrode | electrolyte interface , 1994 .

[103]  Christopher B. Murray,et al.  Langmuir-Blodgett Manipulation of Size-Selected CdSe Nanocrystallites , 1994 .

[104]  M. M. Khader,et al.  Photoelectrochemical dissociation of water at copper-doped p-GaAs electrodes , 1993 .

[105]  Prashant V. Kamat,et al.  Photoelectrochemical behavior of thin CdSe and coupled TiO2/CdSe semiconductor films , 1993 .

[106]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[107]  S. J. Pearton,et al.  Dry and wet etching characteristics of InN, AlN, and GaN deposited by electron cyclotron resonance metalorganic molecular beam epitaxy , 1993 .

[108]  Akihiko Kudo,et al.  Spectral sensitization of a TiO2 semiconductor electrode by CdS microcrystals and its photoelectrochemical properties , 1993 .

[109]  Gary Hodes,et al.  Nanocrystalline photoelectrochemical cells : a new concept in photovoltaic cells , 1992 .

[110]  A. Alivisatos,et al.  Melting in Semiconductor Nanocrystals , 1992, Science.

[111]  I. Rubinstein,et al.  Epitaxial electrodeposition of cadmium selenide nanocrystals on gold , 1992 .

[112]  P. Allongue,et al.  Corrosion of III–V compounds; a comparative study of GaAs and InP: II. Reaction scheme and influence of surface properties , 1991 .

[113]  J. Fendler,et al.  Electrical and photoelectrochemical characterization of cadmium sulfide particulate films by scanning electrochemical microscopy, scanning tunneling microscopy, and scanning tunneling spectroscopy , 1991 .

[114]  M. Steigerwald,et al.  Formation of indium phosphide from trimethylindium (In(CH3)3) and tris(trimethylsilyl)phosphine (P(Si(CH3)3)3) , 1991 .

[115]  Norman Herron,et al.  Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties , 1991 .

[116]  J. Fendler,et al.  Electrical and Photoelectrochemical Characterization of CDS Particulate Films by Scanning Electrochemical Microscopy, Scanning Tunneling Microscopy, and Scanning Tunneling Spectroscopy , 1991 .

[117]  On the possibility of the transformation of solar energy to chemical energy in the electrochemical cell with photoanode CdSe/TiO2 , 1991 .

[118]  M. Ashokkumar,et al.  Photocatalytic hydrogen production with semiconductor particulate systems: An effort to enhance the efficiency , 1991 .

[119]  M. M. Khader,et al.  Photoelectrochemical dissociation of water at silicon doped n-GaAs electrodes , 1991 .

[120]  Hikaru Kobayashi,et al.  Hydrogen evolution at a Pt-modified InP photoelectrode : improvement of current-voltage characteristics by HCl etching , 1991 .

[121]  A. Alivisatos,et al.  Organometallic Synthesis of GaAs Crystallites Exhibiting Quantum Confinement , 1990 .

[122]  A. Eychmüller,et al.  Discrete excitonic transitions in quantum-sized CdS particles , 1990 .

[123]  P. Kamat,et al.  Photophysical and photochemical aspects of coupled semiconductors: charge-transfer processes in colloidal cadmium sulfide-titania and cadmium sulfide-silver(I) iodide systems , 1990 .

[124]  M. Steigerwald,et al.  Bulk and nanostructure Group II-VI compounds from molecular organometallic precursors , 1990 .

[125]  N. Dimitrijević,et al.  Primary photochemical events in CdS semiconductor colloids as probed by picosecond laser flash photolysis , 1989 .

[126]  A. J. Frank,et al.  Conductive polymer-semiconductor junction: characterization of poly(3-methylthiophene):Cadmium sulfide based photoelectrochemical and photovoltaic cells , 1989 .

[127]  Y. Nakato,et al.  Effect of microscopic discontinuity of metal overlayers on the photovoltages in metal-coated semiconductor-liquid junction photoelectrochemical cells for efficient solar energy conversion , 1988 .

[128]  P. Allongue,et al.  Charge transfer and stabilization at illuminated n-GaAs/aqueous electrolyte junctions , 1988 .

[129]  A. Henglein,et al.  Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles , 1987 .

[130]  J. O'm. Bockris,et al.  Significant Efficiency Increase in Self‐Driven Photoelectrochemical Cell for Water Photoelectrolysis , 1987 .

[131]  R. Sweeney,et al.  Polarized absorption and phosphorescence spectra of xanthone in stretched polyethylene films , 1987 .

[132]  J. Kobayashi,et al.  Photogeneration of hydrogen from water over an alumina-supported ZnS–CdS catalyst , 1987 .

[133]  R. C. Kainthla,et al.  The theory of electrode matching in photoelectrochemical cells for the production of hydrogen , 1987 .

[134]  R. C. Kainthla,et al.  Protection of n‐Si Photoanode against Photocorrosion in Photoelectrochemical Cell for Water Electrolysis , 1986 .

[135]  Jean François Dr. Reber,et al.  Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulfide , 1986 .

[136]  A. Henglein,et al.  Photochemistry and radiation chemistry of colloidal semiconductors. 12. Intermediates of the oxidation of extremely small particles of cadmium sulfide, zinc sulfide, and tricadmium diphosphide and size quantization effects (a pulse radiolysis study). , 1986, Journal of the American Chemical Society.

[137]  A. Mau,et al.  Hydrogen photoproduction by Nafion/cadmium sulfide/platinum films in water/sulfide ion solutions , 2002 .

[138]  A. Bard,et al.  Photoassisted hydrogen production using visible light and coprecipitated ZnS·CdS without a noble metal , 1985 .

[139]  N. Chandra,et al.  Semiconductor electrodes. 59. Photocurrent efficiencies at p-indium phosphide electrodes in aqueous solutions , 1985 .

[140]  J. Fendler,et al.  In situ generation of catalyst-coated cadmium sulfide particles in polymerized and unpolymerized surfactant vesicles and their utilization for efficient visible-light-induced hydrogen production , 1985 .

[141]  A. Bard,et al.  Silica-supported ZnS.cntdot.CdS mixed semiconductor catalysts for photogeneration of hydrogen , 1985 .

[142]  A. Bard,et al.  Photoassisted hydrogen production using visible light and coprecipitated zinc sulfide.cntdot.cadmium sulfide without a noble metal , 1985 .

[143]  A. J. Frank,et al.  Polymer-catalyst-modified cadmium sulfide photochemical diodes in the photolysis of water , 1984 .

[144]  J. Fendler,et al.  Colloidal catalyst-coated semiconductors in surfactant vesicles: in situ generation of Rh-coated CdS particles in dihexadecylphosphate vesicles and their utilization for photosensitized charge separation and hydrogen generation , 1984 .

[145]  A. Mau,et al.  H/sub 2/ photoproduction by Nafion/CdS/Pt films in H/sub 2/O/S/sup 2 -/ solutions , 1984 .

[146]  J. Bockris,et al.  Investigation of a protective conducting silica film on n-silicon , 1984 .

[147]  J. Bockris,et al.  Photoelectrochemical evolution of hydrogen on p-indium phosphide , 1984 .

[148]  J. Reber,et al.  Photochemical hydrogen production with cadmium sulfide suspensions , 1984 .

[149]  John O’M. Bockris,et al.  Photovoltaic electrolysis - Hydrogen and electricity from water and light , 1984 .

[150]  D. Ginley,et al.  BP‐Stabilized n‐Si and n ‐ GaAs Photoanodes , 1983 .

[151]  M. Matsumura,et al.  Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder , 1983 .

[152]  K. Rajeshwar,et al.  The n-gallium arsenide electrolyte interface: evidence for specificity in lattice ion-electrolyte interactions, dependence for interfacial potential drops on crystal plane orientation to the electrolyte and implications for solar energy conversion , 1983 .

[153]  B. Miller,et al.  Surface and Redox Reactions at GaAs in Various Electrolytes , 1983 .

[154]  Y. Nakato,et al.  EFFICIENT PHOTOELECTROCHEMICAL CONVERSION OF SOLAR ENERGY WITH n-TYPE SILICON SEMICONDUCTOR ELECTRODES SURFACE-DOPED WITH IIIA-GROUP ELEMENTS , 1982 .

[155]  A. J. Frank,et al.  Visible-light-induced water cleavage and stabilization of n-type cadmium sulfide to photocorrosion with surface-attached polypyrrole-catalyst coating , 1982 .

[156]  Su-Moon Park,et al.  Photoanodic Dissolution of n ‐ CdS Studied by Rotating Ring‐Disk Electrodes , 1982 .

[157]  W. Bonner,et al.  Hydrogen-evolving semiconductor photocathodes: nature of the junction and function of the platinum group metal catalyst , 1982 .

[158]  N. Lewis,et al.  Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes , 1982 .

[159]  J. Harbour,et al.  Effect of platinization on the photoproperties of cadmium sulfide pigments in dispersion. Determination by hydrogen evolution, oxygen uptake, and electron spin resonance spectroscopy , 1981 .

[160]  Michael Grätzel,et al.  Cleavage of Water by Visible‐Light Irradiation of Colloidal CdS Solutions; Inhibition of Photocorrosion by RuO2 , 1981 .

[161]  H. Abruña,et al.  Semiconductor electrodes. 40. Photoassisted hydrogen evolution at poly(benzyl viologen)-coated p-type silicon electrodes , 1981 .

[162]  Adam Heller,et al.  Efficient Solar to Chemical Conversion: 12% Efficient Photoassisted Electrolysis in the [ p -type InP(Ru)]/HCl-KCl/Pt(Rh) Cell , 1981 .

[163]  Visible Light Induced Water Cleavage in CdS Dispersions Loaded with Pt and RuO2, Hole Scavenging by RuO2 , 1981 .

[164]  G. Porter,et al.  Photochemical hydrogen production using cadmium sulphide suspensions in aerated water , 1981 .

[165]  M. Noda Photo-assisted electrolysis of water by Si photoelectrodes , 1981 .

[166]  M. Madou,et al.  Investigation of photoelectrochemical corrosion of semiconductors. 1 , 1980 .

[167]  N. Nakamori,et al.  Infrared study of surface phonon modes in ZnO, CdS and BeO small crystals , 1979 .

[168]  A. Fujishima,et al.  Investigation of CdS Photoanode Reaction in the Electrolyte Solution Containing Sulfide Ion , 1979 .

[169]  H. Gerischer Solar photoelectrolysis with semiconductor electrodes , 1979 .

[170]  B. O. Seraphin,et al.  Solar energy conversion : solid-state physics aspects , 1979 .

[171]  D. Ginley,et al.  Flatband Potential of Cadmium Sulfide ( CdS ) Photoanodes and Its Dependence on Surface Ion Effects , 1978 .

[172]  H. Minoura,et al.  Anodic reactions of several reducing agents on illuminated cadmium sulfide electrode , 1978 .

[173]  Helmut Tributsch,et al.  Hole Reactions from d‐Energy Bands of Layer Type Group VI Transition Metal Dichalcogenides: New Perspectives for Electrochemical Solar Energy Conversion , 1978 .

[174]  R. Memming The Role of Energy Levels in Semiconductor‐Electrolyte Solar Cells , 1978 .

[175]  M. Wrighton,et al.  Characterization of n‐Type Semiconducting Indium Phosphide Photoelectrodes Stabilization to Photoanodic Dissolution in Aqueous Solutions of Telluride and Ditelluride Ions , 1977 .

[176]  H. Tributsch,et al.  Electrochemistry and photochemistry of MoS2 layer crystals. I , 1977 .

[177]  A. Fujishima,et al.  Suppression of Surface Dissolution of CdS Photoanode by Reducing Agents , 1977 .

[178]  M. Wrighton,et al.  Study of n-type gallium arsenide- and gallium phosphide-based photoelectrochemical cells. Stabilization by kinetic control and conversion of optical energy to electricity , 1977 .

[179]  M. Wrighton,et al.  Study of n-type semiconducting cadmium chalcogenide-based photoelectrochemical cells employing polychalcogenide electrolytes , 1977 .

[180]  H. Minoura,et al.  CdS-ELECTROCHEMICAL PHOTOCELL WITH S2− ION-CONTAINING ELECTROLYTE , 1976 .

[181]  A. Ellis,et al.  Optical to electrical energy conversion. Characterization of cadmium sulfide and cadmium selenide based photoelectrochemical cells. [Conversion mechanisms and efficiencies] , 1976 .

[182]  Arthur J. Nozik,et al.  p‐n photoelectrolysis cells , 1976 .

[183]  M. Kastner,et al.  Photoelectrolysis of water: Si in salt water , 1976 .

[184]  D. Cahen,et al.  Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes , 1976, Nature.

[185]  Hideo Tamura,et al.  A Photo-electochemical cell with production of hydrogen and oxygen by a cell reaction , 1975 .

[186]  H. Gerischer,et al.  Electrochemical photo and solar cells principles and some experiments , 1975 .

[187]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[188]  A. Fujishima,et al.  Photosensitized Electrolytic Oxidation of Iodide Ions on Cadmium Sulfide Single Crystal Electrode , 1971 .

[189]  Richard Williams,et al.  Becquerel Photovoltaic Effect in Binary Compounds , 1960 .