Indirect drive ablative Rayleigh–Taylor experiments with rugby hohlraums on OMEGA

Results of ablative Rayleigh–Taylor instability growth experiments performed in indirect drive on the OMEGA laser facility [T. R. Boehly, D. L. Brown, S. Craxton et al., Opt. Commun. 133, 495 (1997)] are reported. These experiments aim at benchmarking hydrocodes simulations and ablator instabilities growth in conditions relevant to ignition in the framework of the Laser MegaJoule [C. Cavailler, Plasma Phys. Controlled Fusion 47, 389 (2005)]. The modulated samples under study were made of germanium-doped plastic (CHGe), which is the nominal ablator for future ignition experiments. The incident x-ray drive was provided using rugby-shaped hohlraums [M. Vandenboomgaerde, J. Bastian, A. Casner et al., Phys. Rev. Lett. 99, 065004 (2007)] and was characterized by means of absolute time-resolved soft x-ray power measurements through a dedicated diagnostic hole, shock breakout data and one-dimensional and two-dimensional (2D) side-on radiographies. All these independent x-ray drive diagnostics lead to an actual on...

[1]  J. Nuckolls,et al.  Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications , 1972, Nature.

[2]  S P Obenschain,et al.  Direct observation of mass oscillations due to ablative Richtmyer-Meshkov instability in plastic targets. , 2001, Physical review letters.

[3]  D. Gontier,et al.  DMX: An absolutely calibrated time-resolved broadband soft x-ray spectrometer designed for MJ class laser-produced plasmas (invited) , 2001 .

[4]  Alexis Casner,et al.  Planar Rayleigh-Taylor and Feedthrough experiments with CH(Ge) on OMEGA , 2006 .

[5]  G. Magelssen,et al.  Feedout coupling of Richtmyer–Meshkov and Rayleigh–Taylor instabilities in stratified, radiation-driven foils , 1999 .

[6]  Steven W. Haan,et al.  Nova indirect drive RayleighTaylor experiments with beryllium , 2002 .

[7]  David H. Cohen,et al.  Numerical Modeling Of Hohlraum Radiation Conditions: Spatial And Spectral Variations Due To Sample Position, Beam Pointing, And Hohlraum Geometry , 2005 .

[8]  N Miyanaga,et al.  Comprehensive diagnosis of growth rates of the ablative Rayleigh-Taylor instability. , 2007, Physical review letters.

[9]  Stephen E. Bodner,et al.  Rayleigh-Taylor Instability and Laser-Pellet Fusion , 1974 .

[10]  Otto L. Landen,et al.  Omega Dante soft x-ray power diagnostic component calibration at the National Synchrotron Light Source , 2004 .

[11]  O. L. Landen,et al.  Ablation Front Rayleigh- Taylor Growth Experiments in Spherically Convergent Geometry , 2000 .

[12]  T. C. Sangster,et al.  Fourier-space nonlinear Rayleigh-Taylor growth measurements of 3D laser-imprinted modulations in planar targets. , 2005, Physical review letters.

[13]  C. Sorce,et al.  Soft x-ray power diagnostic improvements at the Omega Laser Facility , 2006 .

[14]  Otto L. Landen,et al.  Status of our understanding and modeling of x-ray coupling efficiency in laser heated hohlraums , 2001 .

[15]  Kunioki Mima,et al.  Self‐consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma , 1985 .

[16]  Nakai,et al.  Feed-out of rear surface perturbation due to rarefaction wave in laser-irradiated targets , 2000, Physical review letters.

[17]  Denis G. Colombant,et al.  Direct-drive laser fusion: status and prospects , 1998 .

[18]  A Nobile,et al.  Preheat effects on shock propagation in indirect-drive inertial confinement fusion ablator materials. , 2003, Physical review letters.

[19]  Munro,et al.  Large growth Rayleigh-Taylor experiments using shaped laser pulses. , 1991, Physical review letters.

[20]  R. Town,et al.  Nonlinear evolution of broad-bandwidth, laser-imprinted nonuniformities in planar targets accelerated by 351-nm laser light , 1999 .

[21]  Robert L. Kauffman,et al.  Measurement of 0.1-3-keV x rays from laser plasmas , 1986 .

[22]  J. D. Kilkenny,et al.  Development and characterization of a pair of 30–40 ps x‐ray framing cameras , 1995 .

[23]  C. Sorce,et al.  Very-high-growth-factor planar ablative Rayleigh-Taylor experimentsa) , 2006 .

[24]  S. Laffite,et al.  Prolate-spheroid ("rugby-shaped") hohlraum for inertial confinement fusion. , 2007, Physical review letters.

[25]  T. C. Sangster,et al.  Observation of self-similar behavior of the 3D, nonlinear Rayleigh-Taylor instability. , 2005, Physical review letters.

[26]  David K. Bradley,et al.  Characterization of an x-ray radiographic system used for laser-driven planar target experiments , 1999 .

[27]  Nakai,et al.  Uniform multimegabar shock waves in solids driven by laser-generated thermal radiation. , 1994, Physical review letters.

[28]  J. A. Cobble,et al.  Late-time radiography of beryllium ignition-target ablators in long-pulse gas-filled hohlraums , 2006 .

[29]  S. Laffite,et al.  Numerical analysis of spherically convergent Rayleigh-Taylor experiments on the Nova laser , 1999 .

[30]  D. K. Bradley,et al.  Fourier-space image processing for spherical experiments on OMEGA (invited) , 2001 .

[31]  L. Suter,et al.  Drive characterization of indirect drive targets on the Nova laser (invited) , 1995 .

[32]  L. Looney,et al.  Full aperture backscatter station imager diagnostics system for far-field imaging of laser plasma instabilities on Nova , 1996 .

[33]  Nakai,et al.  Dynamic behavior of rippled shock waves and subsequently induced areal-density-perturbation growth in laser-irradiated foils. , 1995, Physical review letters.

[34]  N Lecler,et al.  Target design for ignition experiments on the laser Mégajoule facility , 2006 .

[35]  L. Masse Stabilizing effect of anisotropic thermal diffusion on the ablative Rayleigh-Taylor instability. , 2007, Physical review letters.

[36]  Peter A. Amendt,et al.  Indirect drive experiments utilizing multiple beam cones in cylindrical hohlraums on OMEGA , 1997 .

[37]  M. Busquet Radiation-dependent ionization model for laser-created plasmas , 1993 .

[38]  Weber,et al.  Three-dimensional single mode Rayleigh-Taylor experiments on nova. , 1995, Physical review letters.

[39]  S. Haan,et al.  Weakly nonlinear hydrodynamic instabilities in inertial fusion , 1991 .

[40]  P. B. Radha,et al.  Dependence of shell mix on feedthrough in direct drive inertial confinement fusion. , 2004, Physical review letters.

[41]  B. Remington,et al.  Spatial resolution of gated x-ray pinhole cameras , 1996 .

[42]  A. Velikovich,et al.  Direct observation of mass oscillations due to ablative Richtmyer–Meshkov instability and feedout in planar plastic targets , 2001 .

[43]  Andrew J. Schmitt,et al.  Simulations of high-gain direct-drive inertial confinement fusion targets , 2004 .

[44]  Guy Schurtz,et al.  A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes , 2000 .

[45]  Gilbert W. Collins,et al.  Time-resolved characterization of Hohlraum radiation temperature via interferometer measurement of quartz shock velocity , 2006 .

[46]  S. Skupsky,et al.  Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser , 1999 .

[47]  Peter A. Amendt,et al.  Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums , 2007 .

[48]  Rosen,et al.  High temperatures in inertial confinement fusion radiation cavities heated with 0.35 microm light. , 1994, Physical review letters.

[49]  John Lindl,et al.  Two-dimensional simulation of fluid instability in laser-fusion pellets , 1975 .

[50]  J. Kilkenny,et al.  Large growth, planar Rayleigh–Taylor experiments on Nova , 1992 .

[51]  J. Kilkenny,et al.  NONLINEAR RAYLEIGH-TAYLOR EVOLUTION OF A THREE-DIMENSIONAL MULTIMODE PERTURBATION , 1998 .

[52]  A Melchior,et al.  Streaked optical pyrometer system for laser-driven shock-wave experiments on OMEGA. , 2007, The Review of scientific instruments.

[53]  A. Rubenchik,et al.  A WEAKLY NONLINEAR THEORY FOR THE DYNAMICAL RAYLEIGH-TAYLOR INSTABILITY , 1998 .

[54]  Peter A. Amendt,et al.  Multifluid interpenetration mixing in directly driven inertial confinement fusion capsule implosions , 2004 .

[55]  J. Garnier,et al.  A multiscale analysis of the hotspot dynamics during the deceleration phase of inertial confinement capsules , 2005 .

[56]  John D. M. Edwards,et al.  Rayleigh–Taylor instability evolution in ablatively driven cylindrical implosions , 1996 .

[57]  J. D. Kilkenny,et al.  Single‐mode and multimode Rayleigh–Taylor experiments on Nova , 1995 .

[58]  W. Kruer,et al.  The Physics of Laser Plasma Interactions , 2019 .

[59]  O. Landen,et al.  The physics basis for ignition using indirect-drive targets on the National Ignition Facility , 2004 .

[60]  P. Clavin,et al.  The linear Darrieus-Landau and Rayleigh-Taylor instabilities in inertial confinement fusion revisited , 2006 .

[61]  O. Landen,et al.  Three-dimensional simulations of Nova high growth factor capsule implosion experiments , 1996 .

[62]  S. Skupsky,et al.  Modeling hydrodynamic instabilities in inertial confinement fusion targets , 2000 .

[63]  V. N. Kondrashov,et al.  Optical probing of laser-induced indirectly driven shock waves in aluminum , 1997 .

[64]  A. Velikovich,et al.  Feedout and Richtmyer-Meshkov instability at large density difference , 2001 .

[65]  Peter A. Amendt,et al.  Rugby-like hohlraum experimental designs for demonstrating x-ray drive enhancement , 2008 .

[66]  Peter A. Amendt,et al.  HOHLRAUM RADIATION DRIVE MEASUREMENTS ON THE OMEGA LASER , 1997 .

[67]  Weber,et al.  Multimode Rayleigh-Taylor experiments on Nova. , 1994, Physical review letters.

[68]  Robert L. McCrory,et al.  Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion , 1998 .

[69]  Nelson M. Hoffman,et al.  The feedout process: Rayleigh–Taylor and Richtmyer–Meshkov instabilities in uniform, radiation-driven foils , 1999 .