C, N and O abundances in red clump stars of the Milky Way
暂无分享,去创建一个
[1] J. Pel,et al. The High Road to Astronomical Photometric Precision: Differential Photometry , 2011 .
[2] D. F. Gray,et al. High‐resolution spectroscopic study of red clump stars in the Galaxy: iron‐group elements , 2010, 1006.3857.
[3] N. Langer,et al. Thermohaline mixing in evolved low-mass stars , 2010, 1006.1354.
[4] Kjell Eriksson,et al. A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.
[5] W. Gieren,et al. The abundances of nearby red clump giants , 2007 .
[6] S. Hekker,et al. Precise radial velocities of giant stars. III. Spectroscopic stellar parameters , 2007, 0709.1145.
[7] U. Heiter,et al. Giants in the Local Region , 2007 .
[8] C. Zahn. Thermohaline mixing: a physical mechanism governing the photospheric composition of low-mass giants , 2007, astro-ph/0703302.
[9] J. Lattanzio,et al. Deep Mixing of 3He: Reconciling Big Bang and Stellar Nucleosynthesis , 2006, Science.
[10] O. Bienaym'e,et al. Elemental abundances in the atmosphere of clump giants , 2006, astro-ph/0605615.
[11] Usa,et al. The origin and chemical evolution of carbon in the Galactic thin and thick discs , 2006, astro-ph/0601130.
[12] B. Edvardsson,et al. Chemical composition of evolved stars in the open cluster NGC 7789 , 2005 .
[13] M. Pinsonneault,et al. Abundance Anomalies and Rotational Evolution of Low-Mass Red Giants: A Maximal Mixing Approach , 2004, astro-ph/0412488.
[14] S. Johansson,et al. Experimental f-Value and Isotopic Structure for the Ni I Line Blended with [O I] at 6300 Å , 2003, astro-ph/0301382.
[15] C. Prieto,et al. The chemical compositions of Galactic disc F and G dwarfs , 2002, astro-ph/0211551.
[16] J. D. de Medeiros,et al. The Rotation of Binary Systems with Evolved Components , 2002, astro-ph/0207288.
[17] Jian-rong Shi,et al. The C and N abundances in disk stars , 2002 .
[18] Astronomy,et al. Chemical composition of red horizontal branch stars in the thick disk of the Galaxy , 2001, astro-ph/0110571.
[19] S. Mao,et al. High-Resolution Spectroscopic Observations of Hipparcos Red Clump Giants: Metallicity and Mass Determinations , 2001 .
[20] L. Girardi,et al. Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 , and from to 0.03 , 1999, astro-ph/9910164.
[21] O. Manuel. Origin of elements in the solar system : implications of post-1957 observations , 2000 .
[22] I. Ilyin. High resolution SOFIN CCD : échelle spectroscopy , 2000 .
[23] Santiago Arribas,et al. The effective temperature scale of giant stars (F0–K5) - II. Empirical calibration of versus colours and [Fe/H] , 1999 .
[24] M. Samland. Modeling the Evolution of Disk Galaxies. II. Yields of Massive Stars , 1998 .
[25] V. Smith,et al. FG Sagittae: A Newborn R Coronae Borealis Star? , 1998 .
[26] J. Myers,et al. A Computerized Model of Large-Scale Visual Interstellar Extinction , 1997 .
[27] P. Barklem,et al. The broadening of d–f and f–d transitions by collisions with neutral hydrogen atoms , 1997 .
[28] A. Boothroyd,et al. The CNO Isotopes: Deep Circulation in Red Giants and First and Second Dredge-up , 1995, astro-ph/9512121.
[29] S. Anstee,et al. Width cross-sections for collisional broadening of s-p and p-s transitions by atomic hydrogen , 1995 .
[30] Andrew McWilliam,et al. High-resolution spectroscopic survey of 671 GK giants. I. Stellar atmosphere parameters and abundances , 1990 .
[31] R. Kostyk,et al. Fraunhofer spectrum and a system of solar oscillator strengths , 1989 .
[32] Ingemar Furenlid,et al. Solar flux atlas from 296 to 1300 nm , 1985 .
[33] R. Ulrich. THERMOHALINE CONVECTION IN STELLAR INTERIORS. , 1972 .
[34] I. Iben. Stellar evolution. III - The evolution of a 5 solar masses star from the main sequence through core helium burning. , 1966 .
[35] M. Stern. The “Salt-Fountain” and Thermohaline Convection , 1960 .