Electrical remodeling of the human atrium: similar effects in patients with chronic atrial fibrillation and atrial flutter.

[1]  S. Olsson,et al.  Right atrial monophasic action potential in patients with paroxysmal supraventricular tachyarrhythmias. , 2009, Acta medica Scandinavica.

[2]  J. Nerbonne,et al.  Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. , 1997, Circulation research.

[3]  D P Zipes,et al.  Atrial fibrillation. A tachycardia-induced atrial cardiomyopathy. , 1997, Circulation.

[4]  R. Falk,et al.  Intravenous dofetilide, a class III antiarrhythmic agent, for the termination of sustained atrial fibrillation or flutter. Intravenous Dofetilide Investigators. , 1997, Journal of the American College of Cardiology.

[5]  A. Goette,et al.  Electrical remodeling in atrial fibrillation. Time course and mechanisms. , 1996, Circulation.

[6]  F. Morady,et al.  Effect of atrial fibrillation on atrial refractoriness in humans. , 1996, Circulation.

[7]  K. Ellenbogen,et al.  Pharmacologic alterations in human type I atrial flutter cycle length and monophasic action potential duration. Evidence of a fully excitable gap in the reentrant circuit. , 1996, Journal of the American College of Cardiology.

[8]  M. Allessie,et al.  Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. , 1995, Circulation.

[9]  M R Franz,et al.  Computer Analysis of Monophasic Action Potentials: Manual Validation and Clinically Pertinent Applications , 1995, Pacing and clinical electrophysiology : PACE.

[10]  E. Christiansen,et al.  Hemodynamic predictors of atrial fibrillation or flutter after coronary artery bypass grafting , 1995, Acta anaesthesiologica Scandinavica.

[11]  M. Franz,et al.  Relation between repolarization and refractoriness during programmed electrical stimulation in the human right ventricle. Implications for ventricular tachycardia induction. , 1995, Circulation.

[12]  M. Allessie,et al.  High-density mapping of electrically induced atrial fibrillation in humans. , 1994, Circulation.

[13]  H. Crijns,et al.  Changes in left and right atrial size after cardioversion of atrial fibrillation: role of mitral valve disease. , 1993, Journal of the American College of Cardiology.

[14]  M R Franz,et al.  Ischaemia induced alternans of action potential duration in the intact-heart: dependence on coronary flow, preload and cycle length. , 1993, European heart journal.

[15]  P. Sager,et al.  Frequency-dependent electrophysiologic effects of amiodarone in humans. , 1993, Circulation.

[16]  J. Tijssen,et al.  Recurrence of paroxysmal atrial fibrillation or flutter after successful cardioversion in patients with normal left ventricular function. , 1993, The American journal of cardiology.

[17]  E. Antman,et al.  Propafenone versus sotalol for suppression of recurrent symptomatic atrial fibrillation. , 1993, The American journal of cardiology.

[18]  H. Crijns,et al.  Low-dose amiodarone for maintenance of sinus rhythm after cardioversion of atrial fibrillation or flutter. , 1992, JAMA.

[19]  E. Platia,et al.  Monophasic action potential recordings: evaluation of antiarrhythmic drugs. , 1991, Progress in cardiovascular diseases.

[20]  M R Franz,et al.  A new single catheter technique for simultaneous measurement of action potential duration and refractory period in vivo. , 1990, Journal of the American College of Cardiology.

[21]  M. Allessie,et al.  Quantification of spatial inhomogeneity in conduction and initiation of reentrant atrial arrhythmias. , 1990, The American journal of physiology.

[22]  M R Franz,et al.  Frequency-Dependent Effect of Quinidine, Mexiletine, and Their Combination on Postrepolarization Refractoriness In Vivo , 1989, Journal of cardiovascular pharmacology.

[23]  Y. Nakaya,et al.  Effects of lidocaine and quinidine on post-repolarization refractoriness after the basic and premature action potentials: consideration of aim of antiarrhythmic drug therapy. , 1989, American heart journal.

[24]  A. Kadish,et al.  The Maximum Effect of an Increase in Rate on Human Ventricular Refractoriness , 1988, Pacing and clinical electrophysiology : PACE.

[25]  M. Franz,et al.  Cycle length dependence of human action potential duration in vivo. Effects of single extrastimuli, sudden sustained rate acceleration and deceleration, and different steady-state frequencies. , 1988, The Journal of clinical investigation.

[26]  D P Zipes,et al.  Contraction-excitation feedback in the atria: a cause of changes in refractoriness. , 1988, Journal of the American College of Cardiology.

[27]  M R Franz,et al.  Frequency-dependent effects of quinidine on the relationship between action potential duration and refractoriness in the canine heart in situ. , 1988, Circulation.

[28]  B. Gersh,et al.  The natural history of lone atrial fibrillation. A population-based study over three decades. , 1987, The New England journal of medicine.

[29]  M. Boutjdir,et al.  Inhomogeneity of Cellular Refractoriness in Human Atrium: Factor of Arrhythmia? , 1986, Pacing and clinical electrophysiology : PACE.

[30]  C. Antzelevitch,et al.  Electrophysiological Mechanisms Underlying Rate‐Dependent Changes of Refractoriness in Normal and Segmentally Depressed Canine Purkinje Fibers: The Characteristics of Post‐Repolarization Refractoriness , 1986, Circulation research.

[31]  M. Allessie,et al.  The Wavelength of the Cardiac Impulse and Reentrant Arrhythmias in Isolated Rabbit Atrium: The Role of Heart Rate, Autonomic Transmitters, Temperature, and Potassium , 1986, Circulation research.

[32]  D. Alexopoulos,et al.  The influence of acute myocardial ischaemia on the class III antiarrhythmic action of sotalol. , 1985, Cardiovascular research.

[33]  R. Tsien,et al.  Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium. , 1985, The Journal of physiology.

[34]  M R Franz,et al.  Electrical and mechanical restitution of the human heart at different rates of stimulation. , 1983, Circulation research.

[35]  L. Gettes,et al.  The Electrophysiological Substrate of Atrial Fibrillation , 1983, Pacing and clinical electrophysiology : PACE.

[36]  M R Franz,et al.  Long-term recording of monophasic action potentials from human endocardium. , 1983, The American journal of cardiology.

[37]  B. Surawicz,et al.  Cycle length effect on restitution of action potential duration in dog cardiac fibers. , 1983, The American journal of physiology.

[38]  H. Fozzard,et al.  Voltage and time dependence of restitution in heart. , 1982, The American journal of physiology.

[39]  R. Karp,et al.  Atrial Excitability and Conduction During Rapid Atrial Pacing , 1981, Circulation.

[40]  B. G. Bass Restitution of the action potential in cat papillary muscle. , 1975, The American journal of physiology.

[41]  T. Kural,et al.  Prevalence and predictors of atrial fibrillation in rheumatic valvular heart disease. , 1996, The American journal of cardiology.

[42]  F. Marumo,et al.  Subcellular mechanism for Ca(2+)-dependent enhancement of delayed rectifier K+ current in isolated membrane patches of guinea pig ventricular myocytes. , 1994, Circulation research.

[43]  J. Alpert,et al.  Amiodarone for refractory atrial fibrillation. , 1986, The American journal of cardiology.

[44]  A. Waldo,et al.  Observations on the Mechanism of Atrial Flutter , 1984 .

[45]  P. Coumel,et al.  Failure in the rate adaptation of the atrial refractory period: its relationship to vulnerability. , 1982, International journal of cardiology.

[46]  C. Wyndham What's wrong with the atrium in patients with atrial fibrillation? , 1982, International journal of cardiology.

[47]  C. Wyndham Editorial note What's wrong with the atrium in patients with atrial fibrillation? , 1982 .

[48]  B. R. Jewell,et al.  Analysis of the effects of changes in rate and rhythm upon electrical activity in the heart. , 1980, Progress in biophysics and molecular biology.