Cross-lingual extreme summarization of scholarly documents

[1]  Barbara E. Bullock,et al.  A Survey of Code-switching: Linguistic and Social Perspectives for Language Technologies , 2023, ACL.

[2]  Simone Paolo Ponzetto,et al.  X-SCITLDR: Cross-Lingual Extreme Summarization of Scholarly Documents , 2022, 2022 ACM/IEEE Joint Conference on Digital Libraries (JCDL).

[3]  Simone Paolo Ponzetto,et al.  Multi2WOZ: A Robust Multilingual Dataset and Conversational Pretraining for Task-Oriented Dialog , 2022, NAACL.

[4]  Zhixu Li,et al.  A Survey on Cross-Lingual Summarization , 2022, Transactions of the Association for Computational Linguistics.

[5]  Andrew O. Arnold,et al.  DQ-BART: Efficient Sequence-to-Sequence Model via Joint Distillation and Quantization , 2022, ACL.

[6]  Michael J. Cafarella,et al.  Infrastructure for Rapid Open Knowledge Network Development , 2022, AI Mag..

[7]  Mirella Lapata,et al.  Models and Datasets for Cross-Lingual Summarisation , 2022, EMNLP.

[8]  Franck Dernoncourt,et al.  TLDR9+: A Large Scale Resource for Extreme Summarization of Social Media Posts , 2021, NEWSUM.

[9]  Goran Glavaš,et al.  Visual Summary Identification From Scientific Publications via Self-Supervised Learning , 2021, Frontiers in Research Metrics and Analytics.

[10]  Xingxing Zhang,et al.  Attention Temperature Matters in Abstractive Summarization Distillation , 2021, ACL.

[11]  Maunendra Sankar Desarkar,et al.  ZmBART: An Unsupervised Cross-lingual Transfer Framework for Language Generation , 2021, FINDINGS.

[12]  Rui Meng,et al.  Bringing Structure into Summaries: a Faceted Summarization Dataset for Long Scientific Documents , 2021, ACL.

[13]  Jinlan Fu,et al.  XTREME-R: Towards More Challenging and Nuanced Multilingual Evaluation , 2021, EMNLP.

[14]  Dragomir R. Radev,et al.  COVID-19 information retrieval with deep-learning based semantic search, question answering, and abstractive summarization , 2021, npj Digital Medicine.

[15]  Pascale Fung,et al.  AdaptSum: Towards Low-Resource Domain Adaptation for Abstractive Summarization , 2021, NAACL.

[16]  Jiajun Zhang,et al.  Multimodal Sentence Summarization via Multimodal Selective Encoding , 2020, COLING.

[17]  Goran Glavaš,et al.  XHate-999: Analyzing and Detecting Abusive Language Across Domains and Languages , 2020, COLING.

[18]  Jan Snajder,et al.  Improved Local Citation Recommendation Based on Context Enhanced with Global Information , 2020, SDP.

[19]  Goran Glavaš,et al.  From Zero to Hero: On the Limitations of Zero-Shot Language Transfer with Multilingual Transformers , 2020, EMNLP.

[20]  Yue Dong,et al.  Multi-XScience: A Large-scale Dataset for Extreme Multi-document Summarization of Scientific Articles , 2020, EMNLP.

[21]  Colin Raffel,et al.  mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer , 2020, NAACL.

[22]  Pengfei Liu,et al.  GSum: A General Framework for Guided Neural Abstractive Summarization , 2020, NAACL.

[23]  Claire Cardie,et al.  WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization , 2020, FINDINGS.

[24]  Horacio Saggion,et al.  Mining arguments in scientific abstracts with discourse-level embeddings , 2020, Data Knowl. Eng..

[25]  Sophia Ananiadou,et al.  Cited text span identification for scientific summarisation using pre-trained encoders , 2020, Scientometrics.

[26]  Samuel R. Bowman,et al.  Intermediate-Task Transfer Learning with Pretrained Language Models: When and Why Does It Work? , 2020, ACL.

[27]  Daniel S. Weld,et al.  TLDR: Extreme Summarization of Scientific Documents , 2020, FINDINGS.

[28]  Sylvain Lamprier,et al.  MLSUM: The Multilingual Summarization Corpus , 2020, EMNLP.

[29]  Doug Downey,et al.  Don’t Stop Pretraining: Adapt Language Models to Domains and Tasks , 2020, ACL.

[30]  Xiaodong Fan,et al.  XGLUE: A New Benchmark Datasetfor Cross-lingual Pre-training, Understanding and Generation , 2020, EMNLP.

[31]  Monojit Choudhury,et al.  The State and Fate of Linguistic Diversity and Inclusion in the NLP World , 2020, ACL.

[32]  Marjan Ghazvininejad,et al.  Multilingual Denoising Pre-training for Neural Machine Translation , 2020, Transactions of the Association for Computational Linguistics.

[33]  Omer Levy,et al.  BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension , 2019, ACL.

[34]  Franca Daniele,et al.  Performance of an automatic translator in translating medical abstracts , 2019, Heliyon.

[35]  Xin Jiang,et al.  TinyBERT: Distilling BERT for Natural Language Understanding , 2019, FINDINGS.

[36]  Vincent Ng,et al.  Abstractive Summarization: A Survey of the State of the Art , 2019, AAAI.

[37]  Jungo Kasai,et al.  ScisummNet: A Large Annotated Corpus and Content-Impact Models for Scientific Paper Summarization with Citation Networks , 2019, AAAI.

[38]  John M. Conroy,et al.  Section mixture models for scientific document summarization , 2017, International Journal on Digital Libraries.

[39]  Nazli Goharian,et al.  Scientific document summarization via citation contextualization and scientific discourse , 2017, International Journal on Digital Libraries.

[40]  Guilherme Del Fiol,et al.  Text summarization in the biomedical domain: A systematic review of recent research , 2014, J. Biomed. Informatics.

[41]  Lutz Bornmann,et al.  Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references , 2014, J. Assoc. Inf. Sci. Technol..

[42]  Jeffrey Heer,et al.  The efficacy of human post-editing for language translation , 2013, CHI.

[43]  Jian Pei,et al.  Citation recommendation without author supervision , 2011, WSDM '11.

[44]  Eduard H. Hovy,et al.  Automatic Evaluation of Summaries Using N-gram Co-occurrence Statistics , 2003, NAACL.

[45]  Inderjeet Mani,et al.  The Challenges of Automatic Summarization , 2000, Computer.

[46]  M. Strube,et al.  A Novel Wikipedia based Dataset for Monolingual and Cross-Lingual Summarization , 2021, NEWSUM.

[47]  Natalie Schluter,et al.  MassiveSumm: a very large-scale, very multilingual, news summarisation dataset , 2021, EMNLP.

[48]  Ani Nenkova,et al.  Automatic Summarization , 2011, ACL.