Long-time existence for multi-dimensional periodic water waves

We prove an extended lifespan result for the full gravity-capillary water waves system with a 2 dimensional periodic interface: for initial data of sufficiently small size $${\varepsilon}$$ε, smooth solutions exist up to times of the order of $${\varepsilon^{-5/3+}}$$ε-5/3+, for almost all values of the gravity and surface tension parameters. Besides the quasilinear nature of the equations, the main difficulty is to handle the weak small divisors bounds for quadratic and cubic interactions, growing with the size of the largest frequency. To overcome this difficulty we use (1) the (Hamiltonian) structure of the equations which gives additional smoothing close to the resonant hypersurfaces, (2) another structural property, connected to time-reversibility, that allows us to handle “trivial” cubic resonances, (3) sharp small divisors lower bounds on three and four-way modulation functions based on counting arguments, and (4) partial normal form transformations and symmetrization arguments in the Fourier space. Our theorem appears to be the first extended lifespan result for quasilinear equations with non-trivial resonances on a multi-dimensional torus.

[1]  Thomas Alazard,et al.  On the water-wave equations with surface tension , 2009, 0906.4406.

[2]  Nader Masmoudi,et al.  Global Existence for Capillary Water Waves , 2012, 1210.1601.

[3]  Walter Craig,et al.  The modulational regime of three-dimensional water waves and the Davey-Stewartson system , 1997 .

[4]  Dario Bambusi,et al.  Almost global existence for Hamiltonian semilinear Klein‐Gordon equations with small Cauchy data on Zoll manifolds , 2005, math/0510292.

[5]  Jean-Marc Delort,et al.  A Quasi-linear Birkhoff Normal Forms Method. Application to the Quasi-linear Klein-gordon Equation on S a Quasi-linear Birkhoff Normal Forms Method. Application to the Quasi-linear Klein-gordon Equation on S , 2009 .

[6]  David M. Ambrose,et al.  Well-Posedness of Vortex Sheets with Surface Tension , 2003, SIAM J. Math. Anal..

[7]  Walter Craig,et al.  An existence theory for water waves and the boussinesq and korteweg-devries scaling limits , 1985 .

[8]  Jean-Marc Delort LONG-TIME SOBOLEV STABILITY FOR SMALL SOLUTIONS OF QUASI-LINEAR KLEIN-GORDON EQUATIONS ON THE CIRCLE , 2009 .

[9]  M. Berti,et al.  Almost global existence of solutions for capillarity-gravity water waves equations with periodic spatial boundary conditions , 2017, 1702.04674.

[10]  Xuecheng Wang On the 3-dimensional water waves system above a flat bottom , 2015, 1508.06223.

[11]  Jalal Shatah,et al.  Geometry and a priori estimates for free boundary problems of the Euler's equation , 2006 .

[12]  Jean-Marc Delort,et al.  Sobolev estimates for two dimensional gravity water waves , 2013, 1307.3836.

[13]  David Lannes,et al.  Well-posedness of the water-waves equations , 2005 .

[14]  Daniel Coutand,et al.  Well-posedness of the free-surface incompressible Euler equations with or without surface tension , 2005 .

[15]  J. K. Hunter,et al.  Two Dimensional Water Waves in Holomorphic Coordinates , 2014, 1401.1252.

[16]  David Lannes,et al.  The Water Waves Problem: Mathematical Analysis and Asymptotics , 2013 .

[17]  Hans Lindblad Well-posedness for the motion of an incompressible liquid with free surface boundary , 2005 .

[18]  Sijue Wu,et al.  Well-posedness in Sobolev spaces of the full water wave problem in 2-D , 1997 .

[19]  T. Alazard,et al.  Paralinearization of the Dirichlet to Neumann Operator, and Regularity of Three-Dimensional Water Waves , 2009, 0901.2888.

[20]  M. Berti,et al.  Quasi-Periodic Standing Wave Solutions of Gravity-Capillary Water Waves , 2016, Memoirs of the American Mathematical Society.

[21]  Thomas Alazard,et al.  Global solutions and asymptotic behavior for two dimensional gravity water waves , 2013, 1305.4090.

[22]  Jeremie Szeftel,et al.  Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres , 2004 .

[23]  A. Ionescu,et al.  Recent advances on the global regularity for irrotational water waves , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  Jalal Shatah,et al.  Normal forms and quadratic nonlinear Klein‐Gordon equations , 1985 .

[25]  Dario Bambusi,et al.  Birkhoff Normal Form for Some Nonlinear PDEs , 2003 .

[26]  Klaus Beyer,et al.  On the Cauchy problem for a capillary drop. Part I: irrotational motion , 1998 .

[27]  Fabio Pusateri,et al.  Global solutions for the gravity water waves system in 2d , 2013, Inventiones mathematicae.

[28]  Thomas Alazard,et al.  On the Cauchy problem for gravity water waves , 2012, 1212.0626.

[29]  Sijue Wu,et al.  Global wellposedness of the 3-D full water wave problem , 2011 .

[30]  D. Christodoulou,et al.  S E M I N A I R E E quations aux , 2008 .

[31]  Finite Depth Gravity Water Waves in Holomorphic Coordinates , 2016, 1607.02409.

[32]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[33]  Strichartz Estimates for the Water-Wave Problem with Surface Tension , 2009, 0908.3255.

[34]  Hideaki Yosihara,et al.  Gravity Waves on the Free Surface of an Incompressible Perfect Fluid of Finite Depth , 1982 .

[35]  Catherine Sulem,et al.  The nonlinear Schrödinger equation , 2012 .

[36]  M. Ifrim,et al.  The Lifespan of Small Data Solutions in Two Dimensional Capillary Water Waves , 2014, 1406.5471.

[37]  Xuecheng Wang Global solution for the 3D gravity water waves system above a flat bottom , 2015, Advances in Mathematics.

[38]  P. Germain,et al.  Global solutions for the gravity water waves equation in dimension 3 , 2009, 0906.5343.

[39]  Vladimir E. Zakharov,et al.  Stability of periodic waves of finite amplitude on the surface of a deep fluid , 1968 .

[40]  Jean-Marc Delort,et al.  Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds , 2006 .

[41]  Y. Deng,et al.  Global solutions of the gravity-capillary water wave system in 3 dimensions , 2016, 1601.05685.

[42]  Sijue Wu,et al.  A Rigorous Justification of the Modulation Approximation to the 2D Full Water Wave Problem , 2011, Communications in Mathematical Physics.

[43]  Xuecheng Wang Global Infinite Energy Solutions for the 2D Gravity Water Waves System , 2015, 1502.00687.

[44]  P. Baldi,et al.  Time quasi-periodic gravity water waves in finite depth , 2017, Inventiones mathematicae.

[45]  Jean-Marc Delort,et al.  Long-time existence for the semilinear Klein–Gordon equation on a compact boundary-less Riemannian manifold , 2017 .

[46]  J. Shatah,et al.  Local Well-Posedness for Fluid Interface Problems , 2011 .

[47]  M. Ifrim,et al.  Two dimensional water waves in holomorphic coordinates II: global solutions , 2014, 1404.7583.

[48]  Sijue Wu,et al.  Almost global wellposedness of the 2-D full water wave problem , 2009, 0910.2473.

[49]  Jean-Marc Delort,et al.  Quasi-Linear Perturbations of Hamiltonian Klein-Gordon Equations on Spheres , 2015 .

[50]  A. Ionescu,et al.  Global analysis of a model for capillary water waves in 2D , 2014, 1406.6042.

[51]  M. Ifrim,et al.  Two-dimensional gravity water waves with constant vorticity, I: Cubic lifespan , 2015, Analysis & PDE.

[52]  Dario Bambusi,et al.  Birkhoff normal form for partial differential equations with tame modulus , 2006 .

[53]  A. Ionescu,et al.  Global Regularity for 2d Water Waves with Surface Tension , 2014, Memoirs of the American Mathematical Society.

[54]  A. Ionescu,et al.  Global Analysis of a Model for Capillary Water Waves in Two Dimensions , 2016 .

[55]  Sijue Wu,et al.  Well-posedness in Sobolev spaces of the full water wave problem in 3-D , 1999 .