Using duality to solve generalized fractional programming problems

In this paper we explore the relations between the standard dual problem of a convex generalized fractional programming problem and the “partial” dual problem proposed by Barros et al. (1994). Taking into account the similarities between these dual problems and using basic duality results we propose a new algorithm to directly solve the standard dual of a convex generalized fractional programming problem, and hence the original primal problem, if strong duality holds. This new algorithm works in a similar way as the algorithm proposed in Barros et al. (1994) to solve the “partial” dual problem. Although the convergence rates of both algorithms are similar, the new algorithm requires slightly more restrictive assumptions to ensure a superlinear convergence rate. An important characteristic of the new algorithm is that it extends to the nonlinear case the Dinkelbach-type algorithm of Crouzeix et al. (1985) applied to the standard dual problem of a generalized linear fractional program. Moreover, the general duality results derived for the nonlinear case, yield an alternative way to derive the standard dual of a generalized linear fractional program. The numerical results, in case of quadratic-linear ratios and linear constraints, show that solving the standard dual via the new algorithm is in most cases more efficient than applying directly the Dinkelbach-type algorithm to the original generalized fractional programming problem. However, the numerical results also indicate that solving the alternative dual (Barros et al., 1994) is in general more efficient than solving the standard dual.

[1]  Panos M. Pardalos,et al.  Global optimization of fractional programs , 1991, J. Glob. Optim..

[2]  M. Sion On general minimax theorems , 1958 .

[3]  R. T. Rockafellar Generalized Subgradients in Mathematical Programming , 1982, ISMP.

[4]  Jean-Yves Potvin,et al.  Generalized fractional programming: Algorithms and numerical experimentation , 1985 .

[5]  Jacques A. Ferland,et al.  Convergence of interval-type algorithms for generalized fractional programming , 1989, Math. Program..

[6]  Abraham Charnes,et al.  Programming with linear fractional functionals , 1962 .

[7]  Werner Dinkelbach On Nonlinear Fractional Programming , 1967 .

[8]  A. I. Barros Discrete and Fractional Programming Techniques for Location Models , 1998 .

[9]  Les G. Proll,et al.  A computer routine for quadratic and linear programming problems , 1974, CACM.

[10]  Jochen Werner Duality in Generalized Fractional Programming , 1988 .

[11]  Jacques A. Ferland,et al.  Duality in generalized linear fractional programming , 1983, Math. Program..

[12]  Siegfried Schaible,et al.  Duality in generalized fractional programming via Farkas' lemma , 1983 .

[13]  B. N. Pshenichnyi Necessary Conditions for an Extremum , 1971 .

[14]  Arunachalam Ravindran,et al.  Algorithm 431: A computer routine for quadratic and linear programming problems [H] , 1972 .

[15]  Siegfried Schaible Fractional programming , 1983, Z. Oper. Research.

[16]  S. Schaible,et al.  An algorithm for generalized fractional programs , 1985 .

[17]  R. E. Burkard Book reviewAnalyse und anwendungen von quotientenprogrammen: Ein Beitrag zur planung mit Hilfe der nichtlinearen programmierung: Siegfried SCHAIBLE Anton Hain, Meisenheim am Glan, 1978; 259 pages DM 26,- , 1980 .

[18]  Jacques A. Ferland,et al.  Algorithms for generalized fractional programming , 1991, Math. Program..

[19]  Jacques A. Ferland,et al.  A note on an algorithm for generalized fractional programs , 1986 .

[20]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[21]  J. B. G. Frenk,et al.  A new algorithm for generalized fractional programs , 1996, Math. Program..

[22]  H. F. Bohnenblust,et al.  Solutions of Discrete, Two-Person Games , 1949 .