Stacking-mode confined growth of 2H-MoTe2/MoS2 bilayer heterostructures for UV–vis–IR photodetectors

Abstract The atomic thin, vertically-stacked 2H-MoTe2/MoS2 heterostructures are successfully synthesized using the single step chemical vapor deposition (CVD) method and a magnet-assisted secondary precursor delivery tool. The second material (MoTe2) was grown in a well-controlled, unique and epitaxial 2H-stacking mode atop the first material (MoS2), starting from the edges. This led to the construction of a vertical p-n junction with a broadband photoresponse from the ultraviolet (UV, 200 nm) to the near-infrared (IR, 1100 nm) regions. The high crystallinity of MoTe2/MoS2 heterostructures with a modulation of sulfur and tellurium distribution is corroborated by multiple characterization methods, including Raman spectroscopy, photoluminescence (PL) spectroscopy and high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). Furthermore, the photoelectrical measurements exhibit a tremendous photoresponsivity with an external quantum efficiency (EQE) as high as 4.71 A/W and 532% at 1100 nm, while as 4.67 A/W and 1935% at 300 nm, one to two orders of magnitude higher than other exfoliated MoTe2 heterostructure devices have been reported so far. This synthetic method is a controllable stacking mode confined synthesis approach for 2D heterostructures, and paves the way for the fabrication of high-performance functional telluride-based broadband photodetectors.

[1]  S. Meng,et al.  Interlayer‐State‐Coupling Dependent Ultrafast Charge Transfer in MoS2/WS2 Bilayers , 2017, Advanced science.

[2]  Ning Dai,et al.  Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe₂/MoS₂ van der Waals Heterostructures. , 2016, ACS nano.

[3]  Dong Hee Shin,et al.  High photoresponsivity in an all-graphene p–n vertical junction photodetector , 2014, Nature Communications.

[4]  Pablo Jarillo-Herrero,et al.  Emergence of superlattice Dirac points in graphene on hexagonal boron nitride , 2012, Nature Physics.

[5]  Miaofang Chi,et al.  Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy , 2016, Science Advances.

[6]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[7]  Yong Qin,et al.  Synthesis of large monolayer single crystal MoS2 nanosheets with uniform size through a double-tube technology , 2016 .

[8]  E. Reed,et al.  Structural Phase Transitions by Design in Monolayer Alloys. , 2016, ACS nano.

[9]  Daniele Chiappe,et al.  Two‐Dimensional Si Nanosheets with Local Hexagonal Structure on a MoS2 Surface , 2014, Advanced materials.

[10]  Jr-hau He,et al.  Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface , 2015, Science.

[11]  S. Im,et al.  Electric and Photovoltaic Behavior of a Few‐Layer α‐MoTe2/MoS2 Dichalcogenide Heterojunction , 2016, Advanced materials.

[12]  Moon J. Kim,et al.  Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures , 2015, Nature Communications.

[13]  Zhuhua Zhang,et al.  Photoluminescence quenching and charge transfer in artificial heterostacks of monolayer transition metal dichalcogenides and few-layer black phosphorus. , 2015, ACS nano.

[14]  Suyeon Cho,et al.  Bandgap opening in few-layered monoclinic MoTe2 , 2015, Nature Physics.

[15]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[16]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[17]  Feng Wang,et al.  Configuration‐Dependent Electrically Tunable Van der Waals Heterostructures Based on MoTe2/MoS2 , 2016 .

[18]  A. Stesmans,et al.  Structural degradation of thermal SiO2 on Si by high-temperature annealing: Defect generation , 2002 .

[19]  Robert Vajtai,et al.  Tellurium-Assisted Low-Temperature Synthesis of MoS2 and WS2 Monolayers. , 2015, ACS nano.

[20]  Xianfan Xu,et al.  Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. , 2014, ACS nano.

[21]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[22]  Jiansheng Jie,et al.  High-Responsivity, High-Detectivity, Ultrafast Topological Insulator Bi2Se3/Silicon Heterostructure Broadband Photodetectors. , 2016, ACS nano.

[23]  Lin Gan,et al.  Stacking-Mode-Induced Reactivity Enhancement for Twisted Bilayer Graphene , 2016 .

[24]  M. Dresselhaus,et al.  Double resonance Raman modes in monolayer and few-layer MoTe2 , 2015, 1501.07078.

[25]  A. Suslu,et al.  Environmental Changes in MoTe2 Excitonic Dynamics by Defects-Activated Molecular Interaction. , 2015, ACS nano.

[26]  T. Taniguchi,et al.  Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure , 2013, Science.

[27]  A. Liao,et al.  Large-Area Synthesis of High-Quality Uniform Few-Layer MoTe2. , 2015, Journal of the American Chemical Society.

[28]  M. Batzill,et al.  Molecular beam epitaxy of the van der Waals heterostructure MoTe2 on MoS2: phase, thermal, and chemical stability , 2015 .

[29]  X. Duan,et al.  Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.

[30]  Anindya Das,et al.  Enhancing photoresponsivity using MoTe2-graphene vertical heterostructures , 2016 .

[31]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[32]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[33]  Sang‐Woo Kim,et al.  Highly Efficient Photocurrent Generation from Nanocrystalline Graphene–Molybdenum Disulfide Lateral Interfaces , 2016, Advanced materials.

[34]  S. Russo,et al.  Fast and Highly Sensitive Ionic‐Polymer‐Gated WS2–Graphene Photodetectors , 2017, Advanced materials.

[35]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[36]  Daniel Wolverson,et al.  Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2 , 2013 .

[37]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[38]  P. Ajayan,et al.  Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures. , 2015, Nano letters.

[39]  Claudia Ruppert,et al.  Optical properties and band gap of single- and few-layer MoTe2 crystals. , 2014, Nano letters.

[40]  A. Ouerghi,et al.  Electrolytic phototransistor based on graphene-MoS2 van der Waals p-n heterojunction with tunable photoresponse , 2016 .

[41]  Matthew Z. Bellus,et al.  Ultrafast charge transfer between MoTe2 and MoS2 monolayers , 2016 .

[42]  Takashi Taniguchi,et al.  Epitaxial growth of single-domain graphene on hexagonal boron nitride. , 2013, Nature materials.

[43]  L. Gu,et al.  Transformation of monolayer MoS2 into multiphasic MoTe2: Chalcogen atom-exchange synthesis route , 2017, Nano Research.

[44]  Guangjian Wu,et al.  Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect , 2016, Nanotechnology.

[45]  R. Wallace,et al.  Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors , 2013, 1308.0767.

[46]  E. Reed,et al.  Structural Phase Stability Control of Monolayer MoTe2 with Adsorbed Atoms and Molecules , 2015 .

[47]  F. Miao,et al.  Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions , 2017, Nature Communications.

[48]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[49]  Hao Li,et al.  Near-Infrared Photodetector Based on MoS2/Black Phosphorus Heterojunction , 2016 .

[50]  Kaiqiang Liu,et al.  Tellurium‐Assisted Epitaxial Growth of Large‐Area, Highly Crystalline ReS2 Atomic Layers on Mica Substrate , 2016, Advanced materials.

[51]  K. Novoselov,et al.  Commensurate–incommensurate transition in graphene on hexagonal boron nitride , 2014, Nature Physics.

[52]  N. Dai,et al.  Self-induced uniaxial strain in MoS2 monolayers with local van der Waals-stacked interlayer interactions. , 2015, ACS nano.

[53]  S. Louie,et al.  Three-dimensional spirals of atomic layered MoS2. , 2014, Nano letters.

[54]  Yu Huang,et al.  Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. , 2014, Nature nanotechnology.

[55]  Bin Wang,et al.  Enhanced current rectification and self-powered photoresponse in multilayer p-MoTe2/n-MoS2 van der Waals heterojunctions. , 2017, Nanoscale.

[56]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[57]  Yan Liu,et al.  Scalable Production of a Few-Layer MoS2/WS2 Vertical Heterojunction Array and Its Application for Photodetectors. , 2016, ACS nano.

[58]  Andrew G. Glen,et al.  APPL , 2001 .

[59]  Andrew M Rappe,et al.  Monolayer Single-Crystal 1T'-MoTe2 Grown by Chemical Vapor Deposition Exhibits Weak Antilocalization Effect. , 2016, Nano letters.

[60]  Bing Li,et al.  High-Yield Exfoliation of Ultrathin Two-Dimensional Ternary Chalcogenide Nanosheets for Highly Sensitive and Selective Fluorescence DNA Sensors. , 2015, Journal of the American Chemical Society.

[61]  Sang Hoon Chae,et al.  Phase-Engineered Synthesis of Centimeter-Scale 1T'- and 2H-Molybdenum Ditelluride Thin Films. , 2015, ACS nano.

[62]  T. Zhai,et al.  Chemical Vapor Deposition Synthesis of Ultrathin Hexagonal ReSe2 Flakes for Anisotropic Raman Property and Optoelectronic Application , 2016, Advanced materials.

[63]  Chem. , 2020, Catalysis from A to Z.