Modeling the background and detecting moving objects based on Sift flow
暂无分享,去创建一个
[1] Alex Pentland,et al. Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..
[2] Thierry Bouwmans,et al. Recent Advanced Statistical Background Modeling for Foreground Detection - A Systematic Survey , 2011 .
[3] Larry S. Davis,et al. Real-time foreground-background segmentation using codebook model , 2005, Real Time Imaging.
[4] Marc Van Droogenbroeck,et al. ViBe: A Universal Background Subtraction Algorithm for Video Sequences , 2011, IEEE Transactions on Image Processing.
[5] Jen-Hui Chuang,et al. Learning a Scene Background Model via Classification , 2009, IEEE Transactions on Signal Processing.
[6] Mingjun Wu,et al. Spatio-temporal context for codebook-based dynamic background subtraction , 2010 .
[7] David G. Lowe,et al. Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.
[8] Marc Van Droogenbroeck,et al. ViBE: A powerful random technique to estimate the background in video sequences , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.
[9] Ferdinand van der Heijden,et al. Efficient adaptive density estimation per image pixel for the task of background subtraction , 2006, Pattern Recognit. Lett..
[10] W. Eric L. Grimson,et al. Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[11] Yaser Sheikh,et al. Bayesian modeling of dynamic scenes for object detection , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[12] Kentaro Toyama,et al. Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.
[13] Qi Tian,et al. Foreground object detection from videos containing complex background , 2003, MULTIMEDIA '03.
[14] Larry S. Davis,et al. Background modeling and subtraction by codebook construction , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..
[15] L. Davis,et al. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002, Proc. IEEE.
[16] Marko Heikkilä,et al. A texture-based method for modeling the background and detecting moving objects , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[17] Nikos Paragios,et al. Motion-based background subtraction using adaptive kernel density estimation , 2004, CVPR 2004.
[18] Lucia Maddalena,et al. A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications , 2008, IEEE Transactions on Image Processing.
[19] L. Davis,et al. Incremental density approximation and kernel-based Bayesian filtering for object tracking , 2004, CVPR 2004.
[20] I. Haritaoglu,et al. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002 .
[21] Antonio Torralba,et al. SIFT Flow: Dense Correspondence across Scenes and Its Applications , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[22] Rita Cucchiara,et al. Detecting Moving Objects, Ghosts, and Shadows in Video Streams , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[23] Larry S. Davis,et al. W4: Real-Time Surveillance of People and Their Activities , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[24] Soraia Raupp Musse,et al. Background Subtraction and Shadow Detection in Grayscale Video Sequences , 2005, XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05).