Two distinctive β subunits are separately involved in two binding sites of imidacloprid with different affinities in Locusta migratoria manilensis.

[1]  Q. Fang,et al.  Molecular characterization and expression profiles of nicotinic acetylcholine receptors in the rice striped stem borer, Chilo suppressalis (Lepidoptera: Crambidae) , 2017, Insect science.

[2]  Zewen Liu,et al.  Transcriptional Changes in nAChRs, Interactive Proteins and P450s in Locusta migratoria manilensis (Orthoptera: Acrididae) CNS in Response to High and Low Oral Doses of Imidacloprid , 2015, Journal of insect science.

[3]  Zewen Liu,et al.  Cys-loop ligand-gated ion channel gene discovery in the Locusta migratoria manilensis through the neuron transcriptome. , 2015, Gene.

[4]  Zewen Liu,et al.  Functional interaction of nicotinic acetylcholine receptors and Na+/K+ ATPase from Locusta migratoria manilensis (Meyen) , 2015, Scientific Reports.

[5]  Andrew J. Crossthwaite,et al.  Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae , 2011, BMC Neuroscience.

[6]  Xin-Fu Zhou,et al.  Macrophage presence is essential for the regeneration of ascending afferent fibres following a conditioning sciatic nerve lesion in adult rats , 2011, BMC Neuroscience.

[7]  A. Shelton,et al.  Transcripts of the nicotinic acetylcholine receptor subunit gene Pxylα6 with premature stop codons are associated with spinosad resistance in diamondback moth, Plutella xylostella , 2010, Invertebrate Neuroscience.

[8]  D. Sattelle,et al.  The cys-loop ligand-gated ion channel gene superfamily of the parasitoid wasp, Nasonia vitripennis , 2010, Heredity.

[9]  Zewen Liu,et al.  Native subunit composition of two insect nicotinic receptor subtypes with differing affinities for the insecticide imidacloprid. , 2010, Insect biochemistry and molecular biology.

[10]  N. Millar,et al.  Characterisation of insect nicotinic acetylcholine receptors by heterologous expression. , 2010, Advances in experimental medicine and biology.

[11]  Zewen Liu,et al.  Functional co‐expression of two insect nicotinic receptor subunits (Nlα3 and Nlα8) reveals the effects of a resistance‐associated mutation (Nlα3Y151S) on neonicotinoid insecticides , 2009, Journal of neurochemistry.

[12]  F. Rinkevich,et al.  Transcriptional diversity and allelic variation in nicotinic acetylcholine receptor subunits of the red flour beetle, Tribolium castaneum , 2009, Insect molecular biology.

[13]  Cecilia Gotti,et al.  Diversity of vertebrate nicotinic acetylcholine receptors , 2009, Neuropharmacology.

[14]  Andrew K. Jones,et al.  The cys-loop ligand-gated ion channel gene superfamily of the red flour beetle, Tribolium castaneum , 2007, BMC Genomics.

[15]  E. Frise,et al.  Sequence Finishing and Mapping of Drosophila melanogaster Heterochromatin , 2007, Science.

[16]  N. Millar,et al.  Nicotinic acetylcholine receptors: targets for commercially important insecticides , 2007, Invertebrate Neuroscience.

[17]  Andrew K. Jones,et al.  The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera. , 2006, Genome research.

[18]  S. Sine,et al.  Recent advances in Cys-loop receptor structure and function , 2006, Nature.

[19]  J. Casida,et al.  Pharmacological profiles of recombinant and native insect nicotinic acetylcholine receptors. , 2005, Insect biochemistry and molecular biology.

[20]  Zewen Liu,et al.  A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Benedict M. Sattelle,et al.  Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[22]  N. Millar Assembly and subunit diversity of nicotinic acetylcholine receptors. , 2003, Biochemical Society transactions.

[23]  S. Buckingham,et al.  Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. , 2001, Trends in pharmacological sciences.

[24]  J. Casida,et al.  Structure and diversity of insect nicotinic acetylcholine receptors. , 2001, Pest management science.

[25]  A. Fire,et al.  Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  T. Motohiro Insect nicotinic acetylcholine receptors: mode of action of insecticide and functional architecture of the receptor. , 2000 .

[27]  H. Kayser,et al.  Characterization of nicotinic acetylcholine receptors from the insects Aphis craccivora, Myzus persicae, and Locusta migratoria by radioligand binding assays: Relation to thiamethoxam action , 2000, Journal of biochemical and molecular toxicology.

[28]  N. Millar Heterologous expression of mammalian and insect neuronal nicotinic acetylcholine receptors in cultured cell lines. , 1999, Biochemical Society transactions.

[29]  S. Reynolds,et al.  [3H]Imidacloprid Labels High- and Low-Affinity Nicotinic Acetylcholine Receptor-like Binding Sites in the AphidMyzus persicae(Hemiptera: Aphididae) , 1998 .

[30]  J. Casida,et al.  [3H]imidacloprid: Synthesis of a candidate radioligand for the nicotinic acetylcholine receptor , 1992 .

[31]  H. Betz,et al.  Neuronal acetylcholine receptors in Drosophila: the ARD protein is a component of a high‐affinity alpha‐bungarotoxin binding complex. , 1988, The EMBO journal.