A new seismic model of the Moon: implications for structure, thermal evolution and formation of the Moon

Abstract The seismic determinations of the crustal thickness and mantle velocities are key parameters for most geophysical and geochemical lunar studies. We determine a new seismic model of the Moon after a complete independent reprocessing of the Apollo lunar seismic data with determination of arrival times of about 60 natural and artificial lunar quakes, as well as travel times of converted phases at the crust–mantle interface below the Apollo 12 landing site. On the near side in the Procellarum KREEP Terrane, the only major discontinuity compatible with the crust–mantle boundary is located around 30 km deep. In this terrane, seismic constraints on the crust and mantle lead to a 30 km thick anorthositic crust and a pyroxenite cold mantle, with a bulk composition of 6.4% Al 2 O 3 , 4.9% CaO and 13.3% FeO. Mantle temperatures are in accordance with profiles obtained from the observed electrical conductivity and exclude a liquid Fe core, while being compatible with a Fe–S liquid core. Our Moon model might be explained by a mixture of a primitive Earth with tholeiitic crust and depleted upper mantle, together with a chondritic enstatitic parent body for the impactor planet. It provides mixture coefficients comparable to those obtained by impact simulation as well as an estimate of bulk U of about 28 ppb, in accordance with the U budget in a 40 km mean thick crust, 700 km thick depleted mantle and a lower undepleted primitive mantle.

[1]  Kevin Righter,et al.  Determining the composition of the Earth , 2002, Nature.

[2]  H. Mizutani,et al.  Elastic-wave velocities and thermal diffusivities of Apollo 17 rocks and their geophysical implications , 1974 .

[3]  Klaus Mosegaard,et al.  An inquiry into the lunar interior: A nonlinear inversion of the Apollo lunar seismic data , 2002 .

[4]  G. J. Taylor,et al.  Composition of the Ejecta Deposits of Selected Lunar Basins from Clementine Elemental Maps , 1996 .

[5]  Paul H. Warren,et al.  Megaregolith thickness, heat flow, and the bulk composition of the Moon , 1985, Nature.

[6]  Hood,et al.  Improved gravity field of the moon from lunar prospector , 1998, Science.

[7]  G. J. Taylor,et al.  Lunar composition: A geophysical and petrological synthesis , 1988 .

[8]  Kaare Lund Rasmussen,et al.  A new seismic velocity model for the Moon from a Monte Carlo inversion of the Apollo lunar seismic data , 2000 .

[9]  K. Lambeck,et al.  On Constraining Lunar Mantle Temperatures from Gravity Data , 1980 .

[10]  T. Delcroix,et al.  Assimilation of sea surface salinity in a tropical Oceanic General Circulation Model (OGCM): A twin experiment approach , 2002 .

[11]  Yosio Nakamura,et al.  Seismic velocity structure of the lunar mantle , 1983 .

[12]  D. L. Anderson Theory of Earth , 2014 .

[13]  A. E. Ringwood,et al.  Nature of the 650–km seismic discontinuity: implications for mantle dynamics and differentiation , 1988, Nature.

[14]  O. Kuskov Constitution of the Moon: 3. Composition of middle mantle from seismic data , 1995 .

[15]  H. Wänke Constitution of terrestrial planets , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[16]  Roger J. Phillips,et al.  Potential anomalies on a sphere: Applications to the thickness of the lunar crust , 1998 .

[17]  Lon L. Hood Geophysical constraints on the lunar interior , 1986 .

[18]  M. Zuber,et al.  Long‐wavelength topographic relaxation for self‐gravitating planets and implications for the time‐dependent compensation of surface topography , 2000 .

[19]  P. Spudis,et al.  A chemical and petrological model of the lunar crust , 1986 .

[20]  J. T. Ratcliff,et al.  Lunar rotational dissipation in solid body and molten core , 2001 .

[21]  David R. Lammlein,et al.  Lunar seismicity and tectonics , 1977 .

[22]  G. Simmons,et al.  The 25-km Discontinuity: Implications for Lunar History , 1973, Science.

[23]  R. Kirk,et al.  The competition between thermal contraction and differentiation in the stress history of the Moon , 1989 .

[24]  G. Simmons,et al.  Elastic properties of plagioclase aggregates and seismic velocities in the moon , 1973 .

[25]  M. Toksöz,et al.  Structure of the lunar crust at Highland Site Apollo Station 16 , 1981 .

[26]  Alan B. Binder,et al.  On the thermal history, thermal state, and related tectonism of a moon of fission origin , 1980 .

[27]  J. J. Gillis,et al.  Major lunar crustal terranes: Surface expressions and crust‐mantle origins , 1999 .

[28]  Thomas H. Prettyman,et al.  Thorium abundances on the lunar surface , 2000 .

[29]  David E. Smith,et al.  The Shape and Internal Structure of the Moon from the Clementine Mission , 1994, Science.

[30]  J. Morgan,et al.  The moon: Composition determined by nebular processes , 1978 .

[31]  L. Hood,et al.  Further efforts to limit lunar internal temperatures from electrical conductivity determinations , 1982 .

[32]  P. Lognonné,et al.  First seismic receiver functions on the Moon , 2001 .

[33]  F. Pineau,et al.  Carbon and nitrogen isotopes in the mantle , 1986 .

[34]  O. Kuskov,et al.  Constitution of the Moon: 5. Constraints on composition, density, temperature, and radius of a core , 1998 .

[35]  D O’DowdC,et al.  海岸環境における新粒子の生成と行方(PARFORCE)の研究 目的と結果の総説 , 2002 .

[36]  T. Spohn,et al.  Thermal history of the Moon: Implications for an early core dynamo and post-accertional magmatism , 1997 .

[37]  N. R. Goins,et al.  Lunar Seismology: the Internal Structure of the Moon. Ph.D. Thesis , 1978 .

[38]  Erik Asphaug,et al.  Origin of the Moon in a giant impact near the end of the Earth's formation , 2001, Nature.

[39]  A. Konopliv,et al.  The Gravity Field of the Moon from the Lunar Prospector Mission , 1998 .

[40]  S. Solomon,et al.  Thermal expansion and thermal stress in the Moon and terrestrial planets; clues to early thermal history , 1976 .

[41]  S. Maurice,et al.  Global distribution of lunar composition: New results from Lunar Prospector , 2002 .

[42]  M. Javoy The integral enstatite chondrite model of the earth , 1995 .

[43]  M. Zuber,et al.  The composition and origin of the lunar crust: Constraints from central peaks and crustal thickness modeling , 2001 .

[44]  R. Clayton,et al.  Oxygen isotopic compositions of enstatite chondrites and aubrites , 1984 .

[45]  John H. Jones,et al.  A three-component model for the bulk composition of the Moon , 1989 .

[46]  H. Mizutani Lunar Interior Exploration by Japanese Lunar Penetrator Mission, LUNAR-A , 1995 .

[47]  M. Nafi Toksöz,et al.  Structure of the Moon , 1974 .