A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries

[1]  Yi Cui,et al.  Size-dependent fracture of Si nanowire battery anodes , 2011 .

[2]  Yang Liu,et al.  Anisotropic swelling and fracture of silicon nanowires during lithiation. , 2011, Nano letters.

[3]  Zhigang Suo,et al.  Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge , 2011 .

[4]  J. Qu,et al.  Semi-ab initio interionic potential for gadolinia-doped ceria , 2011 .

[5]  A. Bower,et al.  A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell , 2011, 1107.6020.

[6]  T. Zhu,et al.  Atomistic mechanisms of lithium insertion in amorphous silicon , 2011 .

[7]  John G. Ekerdt,et al.  Structure and Properties of Li―Si Alloys: A First-Principles Study , 2011 .

[8]  Zhigang Suo,et al.  Inelastic hosts as electrodes for high-capacity lithium-ion batteries , 2011 .

[9]  Y. Gao,et al.  Strong stress-enhanced diffusion in amorphous lithium alloy nanowire electrodes , 2011 .

[10]  Huajian Gao,et al.  Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration , 2011 .

[11]  Claus Daniel,et al.  Understanding the Degradation of Silicon Electrodes for Lithium-Ion Batteries Using Acoustic Emission , 2010 .

[12]  A. Bower,et al.  In Situ Measurements of Stress-Potential Coupling in Lithiated Silicon , 2010, 1108.0372.

[13]  Yue Qi,et al.  Elastic softening of amorphous and crystalline Li–Si Phases with increasing Li concentration: A first-principles study , 2010 .

[14]  M. Cherkaoui,et al.  Finite element analysis of oxidation induced metal depletion at oxide–metal interface , 2010 .

[15]  M. Verbrugge,et al.  Diffusion-Induced Stress, Interfacial Charge Transfer, and Criteria for Avoiding Crack Initiation of Electrode Particles , 2010 .

[16]  M. Cherkaoui,et al.  Stress–oxidation interaction in selective oxidation of Cr–Fe alloys , 2010 .

[17]  Ranganath Teki,et al.  Nanostructured silicon anodes for lithium ion rechargeable batteries. , 2009, Small.

[18]  N. Swaminathan,et al.  Evaluation of thermomechanical properties of non-stoichiometric gadolinium doped ceria using atomistic simulations , 2009 .

[19]  Jing Xu,et al.  Determination of the diffusion coefficient of lithium ions in nano-Si , 2009 .

[20]  J. Qu,et al.  Interactions Between Non‐Stoichiometric Stresses and Defect Transport in a Tubular Electrolyte , 2007 .

[21]  N. Swaminathan,et al.  An electrochemomechanical theory of defects in ionic solids. Part II. Examples , 2007 .

[22]  J. Qu,et al.  An electrochemomechanical theory of defects in ionic solids. I. Theory , 2007 .

[23]  Chien H. Wu The role of Eshelby stress in composition-generated and stress-assisted diffusion , 2001 .

[24]  G. Maugin,et al.  Eshelby's stress tensors in finite elastoplasticity , 2000 .

[25]  F. Larché Thermodynamics of Stressed Solids, Precipitation on Dislocations , 1993 .

[26]  J. Cahn,et al.  Phase changes in a thin plate with non-local self-stress effects , 1992 .

[27]  F. Larché Thermodynamics of Stressed Solids , 1991 .

[28]  J. Cahn,et al.  Stress effects on III‐V solid‐liquid equilibria , 1987 .

[29]  J. Cahn,et al.  The Interactions of Composition and Stress in Crystalline Solids. , 1984, Journal of research of the National Bureau of Standards.

[30]  F. C. Larcht'e,et al.  The effect of self-stress on diffusion in solids , 1982 .

[31]  J. D. Eshelby The elastic energy-momentum tensor , 1975 .

[32]  J. Cahn,et al.  A linear theory of thermochemical equilibrium of solids under stress , 1973 .

[33]  J. D. Eshelby,et al.  The force on an elastic singularity , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[34]  Gabriela Koreisová,et al.  Scientific Papers , 1997, Nature.

[35]  J. Willard Gibbs,et al.  The scientific papers of J. Willard Gibbs , 1907 .